β-catenin expression in benign and malignant pleural disorders

Waseem Anani1, Richard Bruggeman2, Dani S Zander2

1Penn State College of Medicine, Hershey, PA, USA; 2Department of Pathology, Penn State College of Medicine/Penn State M. S. Hershey Medical Center, Hershey, PA, USA

Received October 14, 2011; accepted October 26, 2011; Epub October 30, 2011; Published November 30, 2011

Abstract: Benign and malignant pleural processes display a large and overlapping spectrum of morphological appearances, and can be difficult to distinguish, histologically, from each other. β-catenin, a participant in the wingless-type (Wnt) transduction pathway, is involved in the pathogenesis of malignant mesothelioma and has received limited evaluation for its ability to serve as a diagnostic aid for distinguishing between individual pleural disorders. We performed immunohistochemistry for β-catenin on 10 pleural malignant mesotheliomas, 10 examples of mesothelial hyperplasia and 18 cases of organizing pleuritis. Although differences were noted in staining intensity between the mesothelioma and mesothelial hyperplasia groups, extensiveness and cellular location were similar. Staining intensity (mean +/- s.d.) in mesotheliomas (2.00 +/- 0.67) was significantly less intense than in mesothelial hyperplasia cases (3.00 +/- 0.00) (p=0.0005). Stromal cell staining was cytoplasmic in all cases, and endothelial cell staining was membranous, submembranous and cytoplasmic. Nuclear expression of β-catenin was not observed in any of the cases studied. This lack of nuclear staining in the stromal cells of organizing pleuritis differs markedly from the previously reported high frequencies of nuclear β-catenin expression in other pleural spindle cell proliferations (desmoid tumors and solitary fibrous tumors). In summary, the current study adds to previous work indicating a role for β-catenin in the genesis of pleural conditions including organizing pleuritis, mesothelial hyperplasia and malignant mesothelioma. Although IHC for β-catenin does not appear to be conclusive for separating benign from malignant mesothelial proliferations, it may be valuable for assisting in the differential diagnosis of mesothelial and spindle cell proliferations in the pleura.

Keywords: β-catenin, mesothelioma, pleura, mesothelial hyperplasia, Wnt

Introduction

Pleural diseases can present with a wide range of morphologic appearances, leading to challenges in the histologic diagnosis of pleural neoplasms and benign pleural disorders. Differentiating malignant mesothelioma and metastatic carcinomas from other causes of pleural thickening and effusion, however, remains critically important for determination of therapy. Although these processes can resemble each other grossly and microscopically, immunohistochemistry (IHC) can often help to resolve the differential diagnosis. It has been a particularly valuable tool for diagnosis of metastatic adenocarcinomas involving the pleural space, and for confirmation of mesothelial differentiation. IHC has also been useful for distinguishing between solitary fibrous tumor and desmoid tumor. Unfortunately, however, despite numerous investigations utilizing a variety of antibodies, no antibody has emerged as a reliable discriminator between benign and malignant mesothelial proliferations, although some studies suggest a helpful role for epithelial membrane antibody (EMA), desmin, glucose transporter-1 (GLUT-1), tenascin-X, CD146, p53, Ki67, hTERT, insulin-like growth factor-II mRNA-binding protein 3 (IMP3), and K homolog domain containing protein overexpressed in cancer (KOC) [1-15]. The specific EMA antibody clone has also been reported to be important, regarding its utility for differentiating between reactive mesothelial cells and malignant mesothelioma [16].

The wingless-type (Wnt) transduction pathway plays an important role in the genesis of many neoplasms [17, 18], and appears to be impor-
β-catenin in pleural disorders

Important in the pathogenesis of mesothelioma [19, 20], β-catenin, a participant in the Wnt pathway, has undergone limited study for its value in assisting in the morphologic differentiation between mesotheliomas and reactive mesothelial proliferations [21, 22]. β-catenin's roles in the cell include functioning in cell-cell adhesion and participating in Wnt signaling [17, 23]. Cyttoplasmic accumulation of β-catenin occurs with activation of the Wnt pathway through Wnt ligand binding to the frizzled transmembrane receptors, leading to the stabilization and accumulation of β-catenin [20]. Interactions of β-catenin with transmembrane cadherins promote cell-cell adhesion. Nuclear translocation of β-catenin leads to interactions with TCF/LEF transcription factors to promote expression of the oncogenes c-myc and cyclin D1. Nuclear localization of β-catenin was reported in 19% of mesotheliomas and no examples of mesothelial hyperplasia, which demonstrated immunoreactivity localized to the cell membrane [21]. Another study of β-catenin expression, in a spectrum of benign and malignant mesothelial proliferations, revealed increased cytoplasmic and nuclear staining in mesotheliomas as compared with normal and reactive mesothelial proliferations which showed membranous and/or submembranous staining [22]. Given these observations, we decided to evaluate the utility of β-catenin IHC for distinguishing between malignant mesothelioma and reactive pleural processes, as a potential approach for assisting in the interpretation of difficult cases.

Materials and methods

Institutional review board approval

This study was reviewed and approved by the Penn State College of Medicine Institutional Review Board prior to its initiation, and was given exemption from the requirement for informed consent.

Cases

Cases were identified from a text search of surgical pathology reports at Penn State Milton S. Hershey Medical Center. They included 18 examples of organizing pleuritis (5 with a component of acute pleuritis), 10 cases of mesothelial hyperplasia, and 10 malignant mesotheliomas (7 epithelioid, 3 biphasic). All cases were reviewed by two of the authors (WA, DSZ) to confirm the diagnoses.

Immunohistochemical staining and assessment

Immunohistochemistry was performed on 5-mm recut sections of the formalin-fixed paraffin-embedded tissues, using a monoclonal mouse antibody to b-catenin-1 (M3539, Dako, Carpinteria, CA). Heat-induced antigen retrieval with 1 mM ethylenediaminetetra-acetic acid, pH 8.0, was followed by incubation in primary antibody (diluted to 1:400) at room temperature for 30 min. Detection of the primary antibody was carried out with Envision+ antimouse/horseradish peroxidase-labeled polymer detection system (Dako, Carpinteria, CA) followed by visualization with 3,3’-diaminobenzidine (DAB) (Dako) and counterstaining with Mayer’s modified hematoxylin. Formalin-fixed paraffin-embedded colonic tissue sections were used as positive controls and were stained with the same protocol as the experimental cases. Negative control slides were subjected to the same staining protocol modified by the substitution of diluent for the primary antibody.

The types of cells staining, the cellular localization of the staining, and extensiveness of the staining (represented by the percentage of cells staining in each cell population) were evaluated simultaneously by two of the authors (WA and DSZ). Between 25 and 200 cells were counted in each population. Staining extensiveness was scored as positive (≥10% of cells staining) or negative (<10% of cells staining). The staining intensity was also evaluated by the same two authors and assigned a value of 0 (no staining), 1+ (weak staining), 2+ (moderate staining) or 3+ (strong staining), based upon the predominant staining intensity.

Statistical analysis

Data are expressed as mean +/- standard deviation. Statistical significance was determined using the U-test and statistical significance was achieved when the p value was <0.05.

Results

Important differences were noted in staining intensity between the mesothelioma and mesothelial hyperplasia groups, while extensiveness and location were similar (Figures 1, 2 and 3). Staining intensity (mean +/- s.d.) in mesotheliola-
mas (2.00 +/- 0.67) was significantly less intense than in mesothelial hyperplasia cases (3.00 +/- 0.00) (p=0.0005). Staining intensity tended to decrease in the more deeply invasive areas of the mesotheliomas as compared to the areas closer to the pleural surface. Diffuse staining for β-catenin was observed in all cases of malignant mesothelioma, mesothelial hyperplasia, and pleuritis, however. In the cases of malignant mesothelioma, 90% or more of the tumor cells stained in all cases, and the localization was membranous, submembranous and cytoplasmic in 8/10 cases and membranous-only in 2/10 cases. Similarly, in the mesothelial hyperplasia cases, at least 90% of the hyperplastic mesothelial cells expressed β-catenin,
with a membranous, submembranous and cytoplasmic distribution in 9/10 cases, and a solely membranous location in 1/10 cases. At least 90% of the stromal and endothelial cells were immunoreactive for β-catenin in all of the cases of organizing pleuritis (Figure 4). Stromal cell staining was cytoplasmic in all cases, and endothelial cell staining was membranous, submembranous and cytoplasmic. No nuclear expression of β-catenin was observed in any of the samples.

Discussion

Our results suggest that staining intensity for β-catenin differs between mesothelioma and mesothelial hyperplasia, while staining extensiveness and cellular localization are similar.
These results have similarities and differences compared to previous studies, which utilized a different primary antibody for β-catenin. Previous studies similarly found high frequencies of membranous, submembranous and cytoplasmic staining for β-catenin in mesotheliomas, but report nuclear staining in some cases, which was not observed in the current investigation. Dai et al. found that invasive mesotheliomas demonstrated more frequent cytoplasmic (72%) and nuclear staining (37%) and reduced membranous and/or submembranous staining (21%) with β-catenin than normal or reactive mesothelium, which showed distinct membranous and/or submembranous β-catenin in 20/23 (87%) cases [22]. Faint cytoplasmic staining, but no nuclear expression, of β-catenin was observed in three cases of florid reactive mesothelium, but nuclear expression was not found. Similarly, Abutaily and colleagues reported purely membranous staining in nine cases of mesothelial hyperplasia, while membranous and cytoplasmic staining for β-catenin was found in all 63 mesotheliomas and nuclear staining occurred in 19% [21]. Comparison with our results shows a higher frequency of cytoplasmic staining in our reactive cases than in these other studies, while our observation of membranous staining as a feature of mesotheliomas is in agreement with the report of Abutaily et al. [21]. It is likely that the differences in staining pattern and intensity stems from the use of different antibodies, and argues for the importance of correlating staining results observed in practice with the results reported for the specific antibody clone chosen for staining.

Our results expand on the work done previously by a member of our group and colleagues [24], and support a role for β-catenin IHC in separating organizing pleuritis from solitary fibrous tumors (SFTs) and desmoid tumors (DTs) involving the pleura. In this earlier study, extensive (≥70% of the tumor cells) nuclear staining for β-catenin was observed in all (4/4) of the DTs, 4/5 of the histologically benign SFTs, and 2/6 of the histologically malignant SFTs, with intermediate or high intensity, as compared to the absence of nuclear staining in all of the examples of organizing pleuritis assessed in the current study. The antibody used by Andino et al. was the same clone as the antibody employed in the current study. Given the diagnostic challenges presented by some spindle cell proliferations involving the pleura, we believe that β-catenin IHC can offer help for differentiating between organizing pleuritis, SFT, and DT.

In conclusion, the current study supports a role for β-catenin in the genesis of a broad spectrum of pleural conditions including organizing pleuritis, mesothelial hyperplasia and malignant mesothelioma. Although IHC for β-catenin does not appear to be valuable for separating benign from malignant mesothelial proliferations, it may be valuable for the differential diagnosis of spindle cell proliferations in the pleura.

Acknowledgement

This work was supported by a research grant awarded to DSZ by the Department of Pathology at Penn State College of Medicine.

Address correspondence to: Dr. Dani S Zander, Penn State M. S. Hershey Medical Center, Department of Pathology, 500 University Drive, Box 850, MC H083, Hershey, PA, USA Tel: 717-531-8351, Fax: 717-531-5021, E-mail: dzander@hmc.psu.edu

References

β-catenin in pleural disorders


