Introduction

Meningiomas are neoplasms thought to derive from arachnoidal cap cells in the meningeal coverings of the spinal cord and brain [1]. They are the most common benign intracranial tumours and account for up to 34% of these neoplasms [2]. The peak incidence is in middle-aged patients, and the female: male ratio is approximately 2:1 [3, 4]. Meningiomas are generally benign, slow growing tumours that may produce neurological symptoms and signs due to their compression of adjacent structures. They are, however, a tumour entity with fickle clinical presentations, a heterogeneous histological picture, and an inherent trend to recur [5, 6]. Known risk factors for recurrence include histological malignancy grade, subtotal resection, young age, specific subtypes, brain infiltration, and high proliferative rate [7-11].

Much progress has been made in understanding the molecular and genetic basis for meningioma tumorigenesis [12-14]. In clinical practice, however, the diagnosis is based on light microscopy of routinely stained haematoxylin-eosin sections with criteria given by World Health Organization (WHO) [1]. This classification scheme provides guidelines for tumour grading and subtypes. Reported recurrence rates of grade I, II, and III meningiomas are 7-25%, 29-52%, 50-94%, respectively [1].

In the current WHO edition (2007) grade I meningiomas (benign) are recognised by their histological subtype and lack of anaplastic features. Grade II meningiomas (atypical) are defined by one or more of the following four criteria: 1) chordoid or clear cell histologic subtype, 2) four to 19 mitoses per ten high-power field (HPFs), 3) brain infiltration, and 4) three or more of the following five histologic features: small cell change, increased cellularity, prominent nucleoli, sheet-like growth, or necrosis. Grade III meningiomas (anaplastic/malignant) are defined by rhabdoid or papillary subtypes, a histological picture of frank malignancy resembling that of carcinomas, melanomas, or high grade sarcomas, or 20 or more mitosis per ten HPFs [1]. The only change between the WHO 2007 and 2000 edition is that brain-infiltrative and otherwise benign meningiomas are classified as

Original Article

The histopathological spectrum of human meningiomas

Thomas Backer-Grøndahl1, Bjørnar H Moen1, Sverre H Torp1,2

1Department of Laboratory Medicine, Children’s and Women’s Health, Trondheim University Hospital, NTNU, Trondheim, Norway; 2Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim, Norway.

Received March 2, 2012; accepted March 15, 2012; Epub March 25, 2012; Published March 30, 2012

Abstract: Histopathological examination and grading of meningiomas gives valuable prognostic information, although the method is subject for interobserver variability. The aim of this study was to review a large series of human meningiomas in order to examine the frequency of benign (grade I), atypical (grade II), and anaplastic (grade III) forms depending on various WHO classification schemes. In addition, we wanted to describe the frequency of various histopathological features and their mutual correlations. Sections from 196 consecutively treated primary human meningioma patients were revised retrospectively. The established criteria to grade meningiomas, which are also known to be associated with tumorigenesis, were shown to correlate significantly. The number of grade II meningiomas increased when using the WHO 2007 classification (30%) compared with previous editions, mainly due to the definition of brain infiltrating meningiomas as atypical (grade II). A bimodal frequency distribution among age groups of females was observed. Continuous revision of histopathological classification systems is required to improve the diagnostic accuracy.

Keywords: Brain tumors, diagnosis, grading, classification, Clemmesen’s hook
grade II.

The current grading system is based on histological features found in several clinicopathological studies to be of prognostic importance [1, 8]. However, the criteria given are hampered by subjective assessments and lack of precise definitions that can make the practical application difficult [15, 16]. For instance, features such as small cell changes, hypercellularity, sheeting, necrosis, and mitotic count are in need of more definite definitions and standardized evaluation [6]. Thus, a continuous revision of the histopathology of meningiomas is necessary to improve the accuracy and reproducibility of the histopathological diagnosis and grading of these tumours [17].

The aim of the study was to investigate a large number of human meningiomas, consecutively operated during a ten-year period, in order to record the frequency of various subtypes and malignancy grades according to the latest WHO classification (2007). In addition, we wanted to investigate the frequency of and correlations between various histopathological features.

Material and methods

Selection of specimens

Neurosurgical care in Mid-Norway, which includes three counties, is centralised at St. Olavs Hospital, University Hospital Trondheim (680,110 inhabitants in 2011 [18]). All patients treated for a primary meningioma over a ten year period, from 1.01.1991 to 31.12.2000, were retrospectively included after search in electronic patient files at the Department of Pathology and Medical Genetics. The selection process is shown in (Figure 1). Prognostic and clinical information was collected both from medical records at St. Olavs Hospital and at local hospitals.

Histopathological evaluation and clinical information

Routine HES (Haematoxylin-Eosin-Saffron) stained paraffin sections were reviewed without knowledge of prior grading or patient outcome. New sections were cut if lost or when staining had faded. A Nikon 80i light microscope was used, and a HPF was defined using the 40x objective.

Eighteen histological parameters were evaluated (Table 1). The tumours were classified into subtypes according to the dominate growth pattern (roughly 50% of a specimen on microscopic evaluation) [19]. The meningiomas’ initial grade was recorded, and WHO classifications of 2000 and 2007 were applied on the material [1].

Mitotic count was assessed in areas with high mitotic activity, both by summing the highest number of mitotic figures in ten consecutive non-overlapping HPFs and by calculating the
Table 1. The histological characteristics in relation to WHO grade (2007) and associations between grade I and II (Chi-square or Fischer exact test). Only the subjective evaluation of hypercellularity is shown.

<table>
<thead>
<tr>
<th>Histological characteristics</th>
<th>Recorded as</th>
<th>Total material (n=196)</th>
<th>WHO 2007 classification criteria</th>
<th>P-value, WHO I vs II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frequency</td>
<td>Grade I (n=135)</td>
<td>Grade II (n=59)</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>Absent/present</td>
<td>89 (45.4)</td>
<td>44 (32.6)</td>
<td>43 (72.9)</td>
</tr>
<tr>
<td>Sheeting</td>
<td>Absent/present</td>
<td>17 (8.7)</td>
<td>3 (2.2)</td>
<td>12 (20.3)</td>
</tr>
<tr>
<td>Macronucleoli</td>
<td>Absent/present</td>
<td>13 (6.6)</td>
<td>3 (2.2)</td>
<td>9 (15.3)</td>
</tr>
<tr>
<td>Nuclear pleomorphy</td>
<td>Absent/present</td>
<td>52 (26.5)</td>
<td>31 (23.0)</td>
<td>19 (32.2)</td>
</tr>
<tr>
<td>Vesicubus nuclei</td>
<td>Absent/present</td>
<td>70 (35.7)</td>
<td>33 (24.4)</td>
<td>35 (59.3)</td>
</tr>
<tr>
<td>Necrosis</td>
<td>Absent/present</td>
<td>45 (23.0)</td>
<td>16 (11.9)</td>
<td>27 (45.8)</td>
</tr>
<tr>
<td>Hypercellularity</td>
<td>Absent/present</td>
<td>51 (26.0)</td>
<td>26 (19.3)</td>
<td>23 (39.0)</td>
</tr>
<tr>
<td>Small cells</td>
<td>Absent/present</td>
<td>22 (11.2)</td>
<td>6 (4.4)</td>
<td>14 (23.7)</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>Absent/present</td>
<td>18 (9.2)</td>
<td>14 (19.4)</td>
<td>4 (6.8)</td>
</tr>
<tr>
<td>Lipidization</td>
<td>Absent/present</td>
<td>18 (9.2)</td>
<td>9 (6.7)</td>
<td>8 (13.6)</td>
</tr>
<tr>
<td>Psammoma bodies</td>
<td>Absent/present</td>
<td>131 (66.8)</td>
<td>95 (70.4)</td>
<td>35 (59.3)</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>Absent/present</td>
<td>145 (74.0)</td>
<td>103 (76.3)</td>
<td>41 (69.5)</td>
</tr>
<tr>
<td>Hemosiderin</td>
<td>Absent/present</td>
<td>33 (16.8)</td>
<td>21 (15.6)</td>
<td>12 (20.3)</td>
</tr>
<tr>
<td>Hypervascularization</td>
<td>Absent/present</td>
<td>144 (73.5)</td>
<td>98 (72.6)</td>
<td>44 (74.6)</td>
</tr>
<tr>
<td>Mitotic index</td>
<td>Below 0.5</td>
<td>165 (84.2)</td>
<td>129 (82.6)</td>
<td>36 (21.8)</td>
</tr>
<tr>
<td></td>
<td>Between 0.5 and 1</td>
<td>27 (13.8)</td>
<td>6 (22.2)</td>
<td>20 (74.1)</td>
</tr>
<tr>
<td></td>
<td>Above 1</td>
<td>4 (2.0)</td>
<td>3 (12.5)</td>
<td>75 (0.0)</td>
</tr>
<tr>
<td>Mitosis in 10 PHF</td>
<td><4</td>
<td>151 (76.5)</td>
<td>135 (89.4)</td>
<td>16 (10.6)</td>
</tr>
<tr>
<td></td>
<td>4 to 19</td>
<td>43 (22.4)</td>
<td>43 (29.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>19</td>
<td>2 (1.0)</td>
<td>2 (1.0)</td>
<td></td>
</tr>
<tr>
<td>Brain infiltration</td>
<td>Brain-infiltrative</td>
<td>16 (8.2)</td>
<td>8 (100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non- brain-infiltrative</td>
<td>54 (27.6)</td>
<td>37 (68.5)</td>
<td>17 (31.5)</td>
</tr>
<tr>
<td></td>
<td>Brain tissue not observed</td>
<td>126 (64.3)</td>
<td>98 (77.6)</td>
<td>26 (50.0)</td>
</tr>
<tr>
<td>Soft tissue infiltration</td>
<td>Dura only</td>
<td>159 (81.1)</td>
<td>109 (68.6)</td>
<td>48 (30.2)</td>
</tr>
<tr>
<td></td>
<td>Bone, dura, other soft tissue</td>
<td>12 (6.1)</td>
<td>11 (91.7)</td>
<td>1 (8.3)</td>
</tr>
<tr>
<td></td>
<td>Dura observed</td>
<td>2 (1.0)</td>
<td>1 (50.0)</td>
<td>1 (50.0)</td>
</tr>
<tr>
<td></td>
<td>Infiltration not seen</td>
<td>23 (11.7)</td>
<td>14 (60.9)</td>
<td>9 (39.1)</td>
</tr>
</tbody>
</table>
mitotic index (MI) determined by the number of mitosis amid other cells in an ocular grid reticule and expressed as a percentage [20].

Brain infiltration, defined as irregular, tongue-like protrusions of tumour cells infiltrating underlying brain parenchyma without an intervening layer of leptomeninges, was registered as either present, absent, or inaccessible when no brain parenchyma was observed [1, 6].

Increased cellularity was measured by three methods. First, using the 40x objective magnification, an ocular grid reticule was placed in the area of the specimen with the highest density of cells. All tumour cell nuclei crossing an ocular grid reticule-line were counted at three different places, and the mean was recorded. Secondly, the ocular grid reticule, at the same magnification, was placed outside the specimen at random, and moved approximately 2 mm into the specimen, where all meningioma derived cells inside the ocular grid reticule’s outer square were counted. The ocular grid reticule covered 0.058 mm². If the reticule was placed at random in a non-representative area for cell counting, it was moved an additional 2 mm in a horizontal or vertical direction. This was done in three separate areas and their mean were recorded. Thirdly, hypercellularity was evaluated semi-quantitatively as present or not. Vascular components, lymphocyte-like, or haematogenous cells were not included in these calculations.

Sheeting, defined as lack of typical meningioma growth pattern, was noted as present when this covered more than half of the field of vision at the 10x magnification [1, 21-23]. Macronucleoli were recognized as present when easily observed with the 10x objective [4]. Only cells with chromatim condensation, formation of cytoplasmic blebs, and apoptotic bodies were defined as apoptotic. Cells with an increased nuclear cytoplasmic ratio were characterized as small-cell formations. Hypervascularity was recorded as present when distinct vessels were seen with a 10x objective in two or more HPFs. Vesiculous nuclei were noted as present when they were blast-like.

Recorded clinical data included sex, age at surgery, and original tumour grade. Tumour location was registered based on surgical accessibility determined by CT or MR analyses.

The study was approved by the Regional Ethics Committee (project number 4.2006.947).

Statistical methods

SPSS, edition 18, was used for statistical analysis. Two sided Chi-square or Fischer exact test was used to calculate the relation between histological factors. P-values less than 0.05 were regarded as statistically significant.

Results

Patient data are shown in Table 2. A total of 196 meningioma patients were included in the study, 147 females and 49 males giving a female: male-ratio of 3:1. In males younger than the median age at surgery of 59 years, the ratio between benign and atypical meningiomas was 1:1, whereas the ratio was 3:1 for the same age group of females. The ratio between benign and atypical tumours located at the skull base was almost 9:1 in contrast to that of falcine meningiomas of 1:1. Figure 2 indicates a bimodal distribution of new cases among females.

Table 3 shows the distribution of the different meningioma subtypes. Among grade I meningiomas the most common variants were transitional (40%, n=78), meningothelial (17%, n=34), and fibroblastic (7%, n=14). The frequency of grade I, II, and III meningiomas was 69% (n=135), 30% (n=59), and 1% (n=2), respectively. The percentage of meningiomas classified as grade II, increased from the original 18% to 26% and 30% when the WHO 2000 and the 2007 classification criteria were applied, respectively (Table 4). Two cases were down-graded from the original grade III to grade II according to the 2000 and 2007 criteria. Mitotic count was the most common cause of grading meningiomas as grade II (atypical) (73%) (Table 5).

Figure 3 illustrates some typical histopathological features found in human meningiomas, and Table 1 shows the frequency of such features in the various tumour grades as well as the statistical associations between the frequency of these features in grade I and II. The following features occurred more frequent in grade II: apoptosis, sheeting, macronucleoli, necrosis, hypercellularity, small cells, and vesiculous nuclei (p-value ≤ 0.004). Table 6 shows the histological factors’ mutual correlations. Mitotic ac-
activity was correlated to the established histopathological features of malignancy. Lymphocytes and plasma cells were observed infrequently and without statistical relation to other histological features or tumour grade. Although present in 59% (35/59) of grade II meningiomas, psammoma bodies were associated with increased fibrosis and soft tissue infiltration rather than...
features indicative of malignancy. Psammoma bodies occurred also more commonly in transitional meningiomas (data not shown). The subjective evaluation of hypercellularity was positively correlated with tumour grade \((p=0.004) \) and features associated with malignancy, such as apoptosis, sheeting, and prominent nucleoli (Table 1 and 6). The three methods of evaluation of hypercellularity were significantly mutually correlated (data not shown).

Discussion

Human meningiomas unveil a heterogenous histopathology, which may explain the repeated revisions of classification schemes. This study presents a review of 196 consecutively operated primary meningiomas classified according to the latest WHO classification of 2007, with the aim to investigate the frequency of various histopathological features and their mutual correlations.

Median age at surgery did not diverge between different WHO

Figure 2. Number of treated patients divided in age groups of five years, WHO grade, and gender. The age-grouped bars for females in Figure 2 A) indicate a bimodal curve.

Figure 3. Typical histological features encountered in human meningiomas: Mitoses (A), vesiculous nuclei with prominent nucleoli (B), small cell formation (C), brain infiltration (D), sheeting (E), and necroses (F).
The histopathological spectrum of human meningiomas

Table 6. Correlations between the different histological features (Chi-square or Fisher exact test). Dura, bone, or other soft tissue infiltration are all regarded as soft tissue infiltration. Hypercellularity refers to the subjective evaluation.

<table>
<thead>
<tr>
<th></th>
<th>Apoptosis</th>
<th>Sheeting</th>
<th>Macronuclei</th>
<th>Nuclear pleomorphia</th>
<th>Vesiculous nuclei</th>
<th>Necrosis</th>
<th>Hypercellularity</th>
<th>Small cells</th>
<th>Immune cells</th>
<th>Lipidization</th>
<th>Fibrosis</th>
<th>Hemosiderin</th>
<th>Hypervascularization</th>
<th>Soft tissue infiltration</th>
<th>Psammoma bodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheeting</td>
<td><0.000</td>
<td><0.000</td>
<td></td>
</tr>
<tr>
<td>Macronucleoli</td>
<td>0.018</td>
<td><0.000</td>
<td></td>
</tr>
<tr>
<td>Nuclear pleomorphia</td>
<td>0.038</td>
<td><0.000</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Vesiculous nuclei</td>
<td><0.000</td>
<td><0.000</td>
<td><0.000</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td><0.000</td>
<td>0.005</td>
<td>0.079</td>
<td>0.428</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Hypercellularity</td>
<td><0.000</td>
<td><0.000</td>
<td>0.006</td>
<td>0.588</td>
<td>0.021</td>
<td>0.097</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small cells</td>
<td><0.000</td>
<td><0.000</td>
<td>0.043</td>
<td>0.105</td>
<td><0.000</td>
<td><0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune cells</td>
<td>0.56</td>
<td>0.659</td>
<td>0.34</td>
<td>0.262</td>
<td>0.825</td>
<td>0.256</td>
<td>0.257</td>
<td>0.699</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipidization</td>
<td>0.16</td>
<td>0.194</td>
<td>1</td>
<td>0.262</td>
<td>0.018</td>
<td>0.376</td>
<td>0.573</td>
<td>0.433</td>
<td>0.382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen/fibrosis</td>
<td>0.547</td>
<td>0.774</td>
<td>0.52</td>
<td>0.588</td>
<td>0.544</td>
<td>0.508</td>
<td>0.4</td>
<td>0.887</td>
<td>1</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemosiderin</td>
<td>0.697</td>
<td>0.743</td>
<td>0.462</td>
<td>0.59</td>
<td>0.2</td>
<td>0.105</td>
<td>0.26</td>
<td>0.134</td>
<td>0.513</td>
<td>0.513</td>
<td>0.857</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypervascularization</td>
<td>0.396</td>
<td>0.46</td>
<td>0.022</td>
<td>0.034</td>
<td>0.596</td>
<td>0.022</td>
<td>0.193</td>
<td>0.146</td>
<td>0.41</td>
<td>1</td>
<td>0.201</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft tissue infiltration</td>
<td>0.478</td>
<td>1</td>
<td>0.38</td>
<td>0.859</td>
<td>0.191</td>
<td>0.521</td>
<td>0.805</td>
<td>1</td>
<td>0.257</td>
<td>0.06</td>
<td>0.002</td>
<td>0.263</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psammoma bodies</td>
<td>0.644</td>
<td>0.463</td>
<td>1</td>
<td>0.02</td>
<td>0.438</td>
<td>0.292</td>
<td>0.508</td>
<td>0.27</td>
<td>0.611</td>
<td>0.588</td>
<td>0.002</td>
<td>0.215</td>
<td>0.071</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>>3 mitoses</td>
<td><0.000</td>
<td>0.001</td>
<td>0.079</td>
<td>0.057</td>
<td><0.000</td>
<td>0.020</td>
<td>0.001</td>
<td>0.256</td>
<td>0.036</td>
<td>0.015</td>
<td>0.518</td>
<td>0.456</td>
<td>0.151</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>
tumour grades in accordance with the literature [16, 24]. We also confirmed the higher frequency of benign meningiomas in females compared to males, which may be explained by a progesterone-dependent tumour growth [8, 25-28]. In addition, we recognized two peaks in the age-grouped distribution among female patients resembling a phenomenon named Clemmesen’s hook. It describes a bimodal age adjusted incidence curve for breast tumours, where cancers with early onset reflect a stronger hereditary pathogenesis versus the later-onset ones that more often display acquired phenotypes [29, 30].

Meningiomas may occur anywhere in the central nervous system, however some predilections do exist, and our data support these sites [1]. Interestingly, atypical meningiomas were observed more often at non-skull base locations, a tendency that has been described by others as well [26, 31, 32]. Etiologic connections between a particular tumour grade and specific locations is not obvious, but may be related to the meninges’ complex embryological origin [33, 34].

The frequencies of different meningioma subtypes in this study parallel others [16, 24, 32, 35]. Occurrence of several variants may be related to the progenitor cell’s various functions [21]. For instance, meningothelial cap cells exhibit diverse morphological appearances and carry out a unique set of functions that overlap with both mesenchymal and epithelial cells, possible due to the complex ontogenesis of meninges that originate both from mesodermal cells and the neural crest [21, 34, 36]. Distinguishing between benign subtypes of meningiomas is generally of minor importance, however, it is relevant as far as differential diagnoses and specific variants with a more aggressive behaviour are concerned. Although the prognostic significance of smaller areas with such subtypes remains unclear, classification of subtypes according to the growth pattern that dominates more than 50% of specimen appears to be a feasible guideline [6, 19, 21].

Frequencies of meningioma subtypes and histological malignancy grades have changed because of different classification systems. Since up to 25% of tumours with a benign histology recur, the current scheme is not optimal, thus constant improvements of the classification criteria are required [1, 8, 37]. The WHO 2000 classification was an improvement over the 1993 classification in that it brought about more objective and reproducible criteria. Further, it led to recognition of a higher proportion of meningiomas as atypical ranging from 15 to 35% [8, 16, 38]. In the 2007 edition, all brain infiltrative specimens are classified as grade II. In our material, these criteria regarded 30% of the meningiomas as atypical, due to the inclusion of 9 cases with brain invasion and with otherwise benign histology. In contrast, applying the 2000 edition would have resulted in 26% of our specimens being grade II. This illustrates that revision of definitions in classification systems may alter the resultant spectrum of tumour variants and malignancy grades [17]. Consequences of more tumours being recognized as grade II are that increased numbers of patients will need closer radiological follow up and possible radiation therapy [38].

We found that high mitotic count was the most important criterion for determining a meningioma as grade II (73%), thus emphasising its importance in meningioma grading [39-41]. Mitotic figures were often hard to detect, and several factors may bias the assessment, including pycnotic cells and instability of mitotic figures during the fixation process, giving poor interobserver reproducibility [6, 42]. Therefore new techniques have been introduced that are intended to easily and reliably detect proliferative cells or identify mitotic figures, such as Ki-67/MIB-1 and PHH3 immunostaining [7, 43-45]. As mitoses were more commonly seen in areas with increased cellularity, one should search for mitotic figures in such areas.

Meningioma grading can also be based on a combination of five histopathological features that are related to more aggressive behaviour and referred to as “soft criteria” [1]. In our study, these features occurred naturally more frequently in grade II meningiomas, and they were mutually correlated. Concerning sheeting, we found this challenging to evaluate despite the definition used. Confounding factors were areas with immune cell infiltrates or blood vessels, cells in the fibrous subtype that curled in a perpendicular direction to the microscopic slide, and the natural syncytial character of many meningothelial subtypes that resemble sheet-like growth [15]. Regarding hypercellularity, we evaluated this parameter by two quantitative
methods. As they were in accordance with the subjective assessment, the latter is adequate in the daily routine. The definition of prominent nucleioli is ambiguous and not specified in the WHO classification making this parameter encumbered with interobserver variability [15, 22, 46]. In our hands, the description given by Perry et al is useful, where only nucleioli easily observed at 10x are included [4]. Concerning necrosis, this can be seen as either small or large foci [8, 41]. Only spontaneously occurring necroses should be searched for, not those originated by neither preoperative embolization nor radiation [47]. It is hypothesized that micronecrosis has its origin in insufficient cell nourishment and hypoxia due to high metabolic demands, whereas the larger infarct-like necroses are caused mainly by vascular thrombosis [8, 48, 49]. Small cell formations, interpreted as tumour cells with increased nuclear/cytoplasmic ratio, were also sometimes difficult to assess or define, especially in whirled and hypercellular areas, amid apoptosis and infiltrates of immune cells, or in proximity to necrosis. In fact, Perry describes small cell formation as lymphocyte-like [4]. As long as these “soft criteria” are associated with a more aggressive phenotype, the presence of one of these features warrants the designation “benign meningiomas with atypical features” and should prompt a search for other such features that indicate higher tumour grade [49].

Apoptosis is not a part of the present WHO criteria. We found, however, a strong correlation between other atypical features, such as necrosis, sheeting, and high mitotic count, the latter found by others as well [50, 51]. Hence, one should look for the above mentioned “soft criteria” when apoptotic figures are observed. Further, this context is intriguing as long as apoptosis in meningiomas is associated with poorer survival [52]. It might therefore be of interest to establish methods to detect apoptotic figures, due to the difficulty of distinguishing apoptosis from pycnotic cells, in order to fully explore the clinical value of this change. In this context, the use of the apoptotic marker caspase-3 appears promising [52].

Nuclear pleomorphism in meningiomas is generally regarded as a so-called “benign degenerative atypia” rather than a sign of anaplasia [4, 49]. We found, however, that there was a statistical association between nuclear pleomorphism and features indicative of atypia in concert with others that have demonstrated correlation to decreased survival [24]. Additionally, we also recognised so-called vesiculous tumour cell nuclei to be both significantly more common in grade II tumours and to be correlated to the above-mentioned “soft criteria.”

Increased fibrosis or widespread collagen formation are commonly seen in meningiomas regardless of tumour grade, and this is probably linked to the meningothelial cells’ proposed functions [21]. The collagen production may be driven by various growth factors and their receptors, such as EGFR (epidermal growth factor receptor) and VEGF [53-57]. Our review also revealed that meningiomas are highly vascularized tumours (74%) even without using immunohistochemistry. This is in accordance with others, and it is proposed that VEGF (vascular endothelial growth factor) plays an important role in the neovascularization of human meningiomas [5, 58, 59]. The frequently encountered intratumoural haemorrhages, which can be seen as haemosiderin depositions, have been associated with more aggressive and recurrent meningiomas [22]. We could, however, not correlate high vascularization or hemosiderin depositions in meningiomas to any atypical features. Psammoma bodies have been found as a protective factor for recurrence [60]. Similarly, we found a trend for psammoma bodies to occur more frequently in benign tumours and without relation to other atypical features. The presence of lymphocytes, plasma cells, and macrophages in the meningioma tissue may reflect various immune responses against the tumour [61, 62]. In addition, the meningothelial cap cells may also exhibit monocyte-like functions [21].

In conclusion, it is important to regularly conduct quality assurance studies to improve the histopathological diagnosis and, hence, the classification systems. For instance, using the latest WHO criteria, we found atypical meningiomas to constitute approximately 30% of all cases, resulting in an obvious increase of this tumour variant compared with previous classification systems. Although the WHO classifications of 2000 and 2007 are more robust than previous ones with regard to interobserver variability, some criteria are hampered with subjective interpretation in such a way that a continuous validation of robust prognostic histological markers is required.
The histopathological spectrum of human meningiomas

Acknowledgements

We thank Charles William Westin (medical student), Christina Vogt (MD, PhD), Olav Haugen (MD, PhD), and Ivar Skjåk Nordrum (MD, PhD) for their critical reading of the manuscript.

Address correspondence to: Dr. Sverre H. Torp, Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim University Hospital, Laboratory Center, Erling Skjalgsensgate 1, 7006 Trondheim, NORWAY Tel: (+47) 72 57 33 65; Fax: (+47) 72 57 64 28; E-mail: sverre.torp@ntnu.no

References

[27] Roser F, Nakamura M, Bellizonna M, Rosahl SK, Ostertag H and Samii M. The prognostic value of progesterone receptor status in men-
The histopathological spectrum of human meningiomas

[50] Ng HK, Chen L. Apoptosis is associated with atypical or malignant change in meningiomas. An in situ labelling and immunohistochemical study. Histopathology 1998; 33: 64-70.

