Original Article

Adenosine A2B receptor modulates intestinal barrier function under hypoxic and ischemia/reperfusion conditions

Yang Yang1*, Yuan Qiu1*, Wensheng Wang1, Weidong Xiao1, Hongxin Liang1, Chaojun Zhang1, Hanwenbo Yang3, Daniel H Teitelbaum2, Li-Hua Sun1, Hua Yang1*

1Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China; 2Department of Surgery, University of Michigan, MI, USA; 3University of Michigan, Ann Arbor, MI, USA. *Equal contributors.

Received February 26, 2014; Accepted April 2, 2014; Epub April 15, 2014; Published May 1, 2014

Abstract: Background: Intestinal barrier function failure from ischemia/reperfusion (I/R) and acute hypoxia has been implicated as a critical determinant in the predisposition to intestinal inflammation and a number of inflammatory disorders. Here, we identified the role of Adenosine A2B receptor (A2BAR) in the regulation of intestinal barrier function under I/R and acute hypoxic conditions.

Methods: C57BL/6J mice were used, and were randomized into three groups: Sham, I/R, I/R+PSB1115 (a specific A2BAR antagonist) groups. After surgery, the small bowel was harvested for immunohistochemical staining, RNA and protein content, and intestinal permeability analyses. Using an epithelial cell culture model, we investigated the influence of hypoxia on the epithelial function, and the role of A2BAR in the expressions of tight junction and epithelial permeability. The expressions of Claudin-1, occludin and ZO-1 were detected by RT-PCR and Western-Blot. Epithelial barrier function was assessed with transepithelial resistance (TER). Results and conclusions: The A2BAR antagonist, PSB1115, significantly increased tight junction protein expression after intestinal I/R or acute hypoxic conditions. PSB1115 also attenuated the disrupted distribution of TJ proteins. Furthermore, inhibition of A2BAR attenuated the decrease in TER induced by I/R or acute hypoxic conditions, and maintained intestinal barrier function. Antagonism of A2BAR activity improves intestinal epithelial structure and barrier function in a mouse model of intestinal I/R and a cell model of acute hypoxia. These findings support a potentially destructive role for A2BAR under intestinal I/R and acute hypoxic conditions.

Keywords: Ischemia/reperfusion, hypoxia, adenosine A2B receptor, tight junction, claudin-1, occludin, ZO-1, TER

Introduction

Acute intestinal ischemia/reperfusion (I/R) is a critical problem resulting in multiple organ failure [1-4]. Acute intestinal I/R are caused by clinical processes such as strangulation-obstruction of the intestine, sepsis, vascular surgery, hemorrhagic shock, small bowel transplantation, cardiopulmonary bypass, and abdominal aortic surgery [5-9]. Interruption of blood supply caused by ischemia which rapidly damages the intestinal epithelium, increases the intestinal permeability. Restoration of blood flow from the reperfusion stage can initiate a cascade of pathophysiologic responses that lead to additional cell or tissue injury [2]. Loss of intestinal barrier function has been implicated as a potential source of multiple organ failure under such conditions, which caused high mortality in hospital.

Tight junctions (TJs), which are located at the apical membrane, facing the lumen and the basolateral surface and in contact with the intestinal organisms, regulate the passage of ions, water and molecules through the paracellular pathway [10, 11]. The dynamic regulation of TJs under many physiological and pathological processes appears to be important, and the injury of TJs can lead to an increase in intestinal permeability and the dyshomeostasis of the intestinal barrier function (IBF). A loss of epithelial integrity could potentially lead to septic complications.

Hypoxia is a characteristic of many physiological and pathological processes and in a variety
of clinical conditions, such as inflammatory bowel disease [12], celiac disease [13] and intestinal I/R [14], and can induce the disruption of TJs and lead to the alteration of the paracellular permeability. During hypoxia, the accumulation of the extracellular nucleoside adenosine increases, mainly through the regulation of cellular metabolism [15]. Adenosine exerts its function through an interaction with the cell surface G protein-coupled receptors A1, A2A, A2B and A3, and A2BAR is the predominant adenosine receptor expressed in intestinal epithelial cells during the hypoxia [16]. Recently, studies focused on A2BAR [17-20] demonstrated that this receptor has a protective role in maintaining the homeostasis of the epithelial and endothelial barrier function. However, many studies also reported a detrimental role of the A2BAR in which its activation contributes to the inflammation and barrier dysfunction of several organs and tissues [21]. Carman et al using A2 receptor knockout mice showed that activation of A2 receptor resulted in opening of blood brain barrier, results in cellular changes in vitro including decreased transendothelial electric resistance, and alterations in tight junction molecules [22]. Studies from Gündüz also showed that exposure of endothelial monolayers (RCEC) to NECA, a non-selective agonist of AR, resulted in complete derangement of actin cytoskeleton which appeared as scrambled knots resulting in loss of cell demarcation and cell shrinkage [23]. Our laboratory has recently demonstrated a critical role of the HIF-1 signaling pathway to mediate an I/R injury in the intestine. Interestingly, there is a HIF-1alpha binding site in the promoter region of the A2b receptor gene [16]. This strongly suggests that A2BAR may well play a critical role in mediation of ischemic injury to the intestine.

Although the functional and biological effects of the A2BAR in the intestine have been studied, the regulation of A2B in the intestinal barrier function has not been well characterized. In this study, we hypothesized that the A2BAR is involved in the regulation of the intestinal barrier function under conditions of intestinal stress which typically results in loss of epithelial barrier disruption. We utilized two distinct but well characterized models to approach this hypothesis, intestinal I/R and hypoxic conditions.

Materials and methods

Reagents

1-Propyl-8-(4-sulfophenyl) xanthine potassium salt hydrate (PSB1115), polyclonal anti-ZO-1, anti-A2BAR and monoclonal anti-occludin antibodies were purchased from Santa Cruz Biotechnology (USA). Polyclonal anti-claudin-1 was obtained from Abcam (USA). Anti-GAPDH antibody was purchased from Goodhere Biotechnology (Hangzhou, China). The secondary antibodies were obtained from Beyotime (Jiangsu, China). Fetal bovine serum (FBS) was purchased from Hyclone (Thermo, USA).

Animals

Studies reported here conformed to the guidelines for the care and use of laboratory animals established by the University Committee on Use and Care of Animals at the Third Military Medical University, and the whole protocol was approved by this committee. Male, 6-8-week-old, specific pathogen-free, C57BL/6 mice were purchased from the Laboratory Animal Center (Third Military Medical University, Chongqing, P.R. China), maintained in temperature, humidity and light-controlled conditions, and then randomized into Sham group, I/R group and I/R+PSB1115 group. PSB1115 (10 mg/kg intraperitoneally) was given in I/R+PSB1115 group 20 min before the operation.

Intestinal ischemia/reperfusion injury

After intraperitoneal anesthesia with 40 mg/kg pentobarbital, the abdomen was opened at the midline, and the superior mesenteric artery (SMA) was occluded for 20 min using non-traumatic vascular clamps, followed by reperfusion for 1 h, 3 h and 6 h. Animals in the sham group underwent identical procedures without SMA occlusion (Sham). In all experiments, at least 6 animals were included in each group, and all experimental assays were repeated at least 3 times from specimens derived from each animal.

Immunohistochemistry

Anti-Adenosine A2BAR antibody (Santa Cruz Biotechnology; USA) was used for immunohistochemistry staining. The tissues were fixed in 4% paraformaldehyde, cut into 5-mm sections,
treated with 0.5% hydrogen peroxide in methanol, blocked for 45 min, and subsequently incubated with anti-A2BAR (1:200; Santa Cruz), or IgG (negative control) overnight at 4°C. These sections were incubated with biotinylated goat anti-rabbit IgG for 60 min, followed by incubation with streptavidin-enzyme conjugate for 15 min at room temperature. The peroxidase activities were developed using diaminobenzidine. After counterstaining with hematoxylin, the localization of A2BAR was examined under light microscope (630 ×).

Cell culture model under hypoxia

Caco-2 (human colon carcinoma) cells were obtained from China Center for Type Culture Collection (Beijing, China) and maintained in Eagle's Minimum Essential Medium (MEM) medium supplemented with 20% fetal bovine serum (FBS, Gemini Bioproducts, Woodland, CA), 100 units/ml penicillin, and 100 μg/ml streptomycin (Invitrogen, Carlsbad, CA) at 37°C in a 5% CO₂ humidified incubator. The culture medium was changed every two days.

For the hypoxia (1% oxygen concentration) experiment, cells were seeded on 6-well plates at a density of 1 × 10⁶ cells/well. When the cells reached 70-80% confluence, they were cultured overnight with serum-free MEM medium. Prior to the experiment, the cells were pretreated with or without PSB1115 (10 μM) for 15 min and then cultured under normoxic or hypoxic conditions for 6 h. The following groups were analyzed: 1) untreated cells (normoxia); 2) untreated cells (hypoxia); and 3) cells pretreated with PSB1115 (10 μM) and then cultured under hypoxia.

Reverse transcription-PCR

To identify the influence of the PSB1115 on the expression of TJ proteins, total RNA was extracted from the monolayers of Caco-2 cells using the Trizol extraction method (Takara, Dalian, China). cDNA synthesis was then performed using reverse transcription according to the manufacturer’s protocol (Takara, Dalian, China). The PCR reaction contained 0.4 μM sense and 0.4 μM antisense primers. The polymerase chain reaction amplification was performed using following protocol: 94°C for 5 min, followed by 34 cycles of 94°C for 30 s, 60°C or 57°C for 30 s and 72°C for 30 s, with a final extension at 72°C for 5 min.

The primer sequences listed in Table 1 were synthesized by Takara (Dalian, China), and the housekeeping gene β-actin was used as an internal control. The levels of claudin-1, occludin and ZO-1 mRNAs were semi-quantified by RT-PCR analysis tools and normalized to the β-actin levels.

Western blot analyses

Total proteins were extracted using an SDS total protein extraction kit (Beyotime, Jiangsu). The protein concentration was determined according to the Bradford method using the BCA assay reagent (Beyotime, China). Samples (25 μg protein) were loaded onto SDS-PAGE gels and separated at 120 V for 70 min for occludin, 120 V for 40 min for claudin-1 and 200 mA for 120 min for ZO-1. After electrophoresis, the proteins were transferred onto a polyvinylidene difluoride membrane (Millipore). After blocking with 5% bovine serum albumin in TBS-T (50 mMTris–HCl [pH 7.5], 140 mM NaCl, and 0.1% Tween) for 2 h, the membranes were incubated overnight at 4°C with polyclonal rabbit antibodies against A2BAR (1:250, Santa Cruz), claudin-1 (1:500, Abcam) and ZO-1 (1:500, Santa Cruz), monoclonal anti-occludin (1:250, Santa Cruz) and anti-GAPDH (1:1000, Goodhere Biotechnology, Hangzhou, China). The membranes were washed three times with TBST for 5 min and then incubated with horse-radish peroxidase-conjugated goat anti-mouse or goat anti-rabbit secondary antibodies at room temperature for 2 h. After washing 6 times with TBST for 5 min each, the proteins were detected using ECL reagents (Boster, Wuhan, China).

Immunofluorescence

Caco-2 cells were cultured on acid-washed coverslips and exposed to hypoxic conditions (2% O₂, 5% CO₂, 94% N₂, 37°C and 90% humidity). The samples were then washed twice in PBS and fixed in 4% paraformaldehyde for 10 min at room temperature. After washing with PBS, the samples were incubated with 5% bovine serum albumin and then immunostained with mouse anti-occludin (1:500, Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit anti-ZO-1 (1:500, Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-A2BAR (1:250, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and anti-clau-
Table 1. Primers of the genes and the size of the products

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer</th>
<th>Size of Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse A2BAR</td>
<td>Sense: 5'-GGGGTGGAACAGATAAGACAG-3'</td>
<td>166 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-TATGAGGAAGGGAGGAAGACAC-3'</td>
<td></td>
</tr>
<tr>
<td>Mouse Occludin</td>
<td>Sense: 5'-AGATCCCTGAGTACCTGAGTGG-3'</td>
<td>109 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-TCTGCTCGTTCCCTCGGT-3'</td>
<td></td>
</tr>
<tr>
<td>Mouse Claudin-1</td>
<td>Sense: 5'-CACGATGTAAGGAACAGAATG-3'</td>
<td>151 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-GGACAGGGAGGAAAGTATG-3'</td>
<td></td>
</tr>
<tr>
<td>Mouse ZO-1</td>
<td>Sense: 5'-AATGCGACGACGCGAGTGAG-3'</td>
<td>178 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-AATGCGACGACGCGAGTGAG-3'</td>
<td></td>
</tr>
<tr>
<td>Mouse β-actin</td>
<td>Sense: 5'-TGACGTGGGGATCGACAAAG-3'</td>
<td>205 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-CTGGAAGGAGTGGACAGCGAG-3'</td>
<td></td>
</tr>
<tr>
<td>Human A2BAR</td>
<td>Sense: 5'-AATCCCGATGCAAAGCAAG-3'</td>
<td>166 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-CAGATACTGTCATCTGTC-3'</td>
<td></td>
</tr>
<tr>
<td>Human occludin</td>
<td>Sense: 5'-AGCAGCGGTGTTAATATGAG-3'</td>
<td>118 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-ACTTGTCAGTGTTGGAAG-3'</td>
<td></td>
</tr>
<tr>
<td>Human Claudin-1</td>
<td>Sense: 5'-GGTACAATTAGTGCTCCGCTC-3'</td>
<td>118 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-CTGTTGTTGTTGTAAGGACAGTGGT-3'</td>
<td></td>
</tr>
<tr>
<td>Human ZO-1</td>
<td>Sense: 5'-ACTCCGATTGCAAAATCTT-3'</td>
<td>154 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-GACTCGAGGATAGCCCTGTTAGGAG-3'</td>
<td></td>
</tr>
<tr>
<td>Human β-actin</td>
<td>Sense: 5'-CCACAACTACCTTCAACTTCC-3'</td>
<td>147 bp</td>
</tr>
<tr>
<td></td>
<td>Antisense: 5'-GTGATCCCTCTGCTGATCCATG-3'</td>
<td></td>
</tr>
</tbody>
</table>

Before the monolayers were exposed to hypoxia, PSB-1115 was added to the medium in the apical and basolateral aspect of intestinal epithelial cells. The integrity of the confluent polarized monolayers was assessed by measuring the TER under normoxia and after hypoxia. TER (ohms per square centimeter) = Total resistance-Blank resistance) (ohms)/(Area (square centimeter)).

TER, which represents the intestinal epithelial barrier function and tissue viability [24], was determined based on Ohm’s law. The permeability of the small intestine was evaluated by TER.

The mucosal membrane was mounted in modified Using chambers (Physiologic Instruments, San Diego, CA) as flat sheets on a segment holder, with an exposed tissue area of 0.3 cm². Each half cell (mucosal and serosal) was filled with 5 mL of preheated 37°C Kreb’s Ringer solution buffer. The buffer contained 110.0 mM NaCl, 3.0 mM CaCl₂, 5.5 mM KCl, 1.4 mM KH₂PO₄, 29.0 mM NaHCO₃, and 1.2 mM MgCl₂ and was adjusted to a pH of 7.4, continuously oxygenated with O₂/CO₂ (95%/5%), and stirred by gas flow in the chambers. One pair of Ag/AgCl-electrodes (Physiologic Instruments) with 3 M KCl in 3% agar bridges was used to measure transepithelial potential difference, and another pair of Pt electrodes was used for current passage. The spontaneous potential difference across the intestinal membrane was maintained at 5 mV by an automated voltage clamp, and the injected short circuit current (Isc) was monitored continuously as an indication of net active ion transport. The transmembrane resistance in X cm² was determined by using Ohm’s law. Baseline Isc was recorded after a 20-min equilibration period.

Transepithelial electrical resistance (TER) measurements

TER was measured using a Millipore electric resistance system (ESR-2, Millipore). Caco-2 monolayers were grown on Millicell filters (0.33 cm² area, 0.4 μm pore diameter, and 6.5 mm diameter) at a density of 5 × 10⁴ cells/cm² for up to 5-6 days until the TER achieved a stable value of 80-120 Ω/cm² to obtain an integrated cell monolayer. Additionally, the media in the apical and bottom compartments was changed every day.
Tissues were bathed on the serosal and mucosal sides with Ringer solution. Bathing solutions were oxygenated (95% O$_2$, 5% CO$_2$) and circulated in water-jacketed reservoirs at 37°C. After equilibration in Ussing chambers for 20 min, experiments were run for up to 1.5-2 h. TER was calculated on the basis of the spontaneous potential difference and short-circuits current.

Statistical analysis

The results are expressed as the mean ± SD from 3-4 experiments performed in triplicate or quadruplicate. All of the data presented were analyzed by using ANOVA. For each test, P values < 0.05 were considered to be statistically significant.

Results

A2BAR is induced by hypoxia both in vitro and I/R in vivo models

Based on previous studies showing A2BAR expression is selectively induced by hypoxia and ischemia [25-27], we using RT-PCR and Western Blot to detected A2BAR expression.
under hypoxia and intestinal I/R conditions. As shown in Figure 1A, analysis of intestinal epithelial A2BAR mRNA by RT-PCR revealed a time-dependent induction of A2BAR by hypoxia (P < 0.01) and I/R (P < 0.01), with maximal changes of 1.58 ± 0.02 fold increase at 6 h after I/R compared with the Sham group (P < 0.01). Extension of these findings at the protein level by Western blot revealed that total levels of A2BAR were also increased in a time-dependent manner induced by hypoxia compared to normoxia (P < 0.01) (Figure 1B, 1D); and induced by I/R compared to Sham animals (P < 0.01) (Figure 1C, 1E).

To further confirm the changes of A2BAR expression, immunohistochemistry was used to detect A2BAR expression in Sham group and I/R group (Figure 1F-H), immunofluorescence was used to detect A2BAR expression in cell cultures under normoxic and hypoxic conditions (Figure 1I). Sham and normoxia groups exhibit weak staining of A2BAR, while the structures of intestinal villi were significantly damaged by I/R when compared with the Sham group. High magnification reveals that A2BAR expression localizes to the cytomembrane of intestinal epithelia (Figure 2C). The hypoxia group exhibit strong staining of A2BAR when compared with the normoxia group.

All these results confirm that hypoxia and I/R prominently increase A2BAR expression.

A2BAR antagonist attenuates changes in TJ protein expression caused by hypoxia and intestinal I/R

In vitro study: To investigate the expression of TJs under hypoxia, we used RT-PCR to detect the expression of claudin-1, occludin and ZO-1 in Caco-2 monolayers. As shown in Figure 2A-C, hypoxia led to a significant reduction in of claudin-1, occludin and ZO-1 expression (0.59 ± 0.048, P < 0.01, 0.34 ± 0.018, P < 0.05, and 0.24 ± 0.039, P < 0.01, respectively) when compared with normoxic conditions. Pretreatment with the A2BAR antagonist, PSB1115, before being subjected to hypoxia exhibited much higher levels of claudin-1, occludin and ZO-1 when compared to the group without
A2B receptor in intestinal barrier function

Figure 3. Effect of an A2BAR antagonist on the abundance of TJ proteins in Caco-2 cells exposed to hypoxia and I/R intestinal tissue. A-D. Caco-2 cells were cultured in MEM for 7 days under normoxia, incubated for 24 h in serum-free medium, and then exposed to hypoxia in the absence or presence of PSB1115 (10 μM) for 6 h. Cell lysates were then prepared and subjected to immunoblot analysis with antibodies against claudin-1, occludin and ZO-1. The amount of each TJ protein was normalized to the GAPDH and then expressed relative to the corresponding normalized value for the normoxic condition. E-H. Claudin-1, occludin and ZO-1 was detected in Sham, I/R and I/R+PSB1115 groups. The amount of each TJ protein was normalized to the GAPDH and then expressed relative to the corresponding normalized value for the Sham group. The data are the means ± SD from three independent experiments. (*P < 0.05, **P < 0.01, compared to the Nx group and Sham group; ***P < 0.05, compared to the Hx group and IR group).

PSB1115 pretreatment under hypoxia (0.73 ± 0.027 vs 0.41 ± 0.061, P < 0.05, 0.71 ± 0.027 vs 0.66 ± 0.027, P < 0.01, and 1.27 ± 0.079 vs 0.76 ± 0.039, P < 0.05). However, no significant changes in occludin mRNA expression was found in the Hx+PSB1115 group (0.71 ± 0.027) when compared with the Hx group (0.66 ± 0.027) (P < 0.01) (Figure 2B).

To clarify further these changes in TJ protein expression, claudin-1, occludin and ZO-1 protein expressions were also examined. **Figure 3A-D** shows that the protein levels of claudin-1, occludin and ZO-1 were reduced in Caco-2 cells under hypoxia exposure for 6 h and restored by PSB1115 pretreatment. Compared to the Nx group, the claudin-1, occludin and ZO-1 protein...
expression under hypoxia (Figure 3A-C) showed a reduction of approximately 25% (P < 0.05), 34% (P < 0.01) and 25% (P < 0.05), respectively. In the Hx+PSB1115 group, claudin-1, occludin and ZO-1 expression significantly increased by approximately 42% (P < 0.05), 24% (P < 0.05) and 50% (P < 0.05), respectively were found (Figure 3A-C). The above data indicated that the TJ protein expression, which was down-regulated under the hypoxic condition, can be prevented by the A2BAR antagonist.

In vivo study: As shown in Figure 2D-F, intestinal I/R induced significant decreases in claudin-1, occludin and ZO-1 mRNA expression when compared with the Sham group, respectively. The group pretreated with PSB1115 before being operation exhibited high levels of claudin-1, occludin and ZO-1 when compared to the group without PSB1115 pretreatment under I/R conditions (0.80 ± 0.04 vs 0.40 ± 0.06, P < 0.01, 0.84 ± 0.04 vs 0.60 ± 0.03, P < 0.05, and 1.22 ± 0.18 vs 0.68 ± 0.02, P < 0.01) (Figure 2D-F).

Figure 3E-H shows that the protein levels of claudin-1, occludin and ZO-1 were reduced under I/R in the 6 h group, and restored by PSB1115 pretreatment. Compared to the Sham group, the claudin-1, occludin and ZO-1 protein expression under I/R condition (Figure 3E-H) showed a reduction of approximately 23% (P < 0.05), 33% (P < 0.01), and 20% (P < 0.05) respectively. In the I/R+PSB1115 group, occludin expression significantly increased by approximately 125% (P < 0.05). However, no significant changes in claudin-1 and ZO-1 expression in the I/R+PSB1115 group (elevated by approximately 18%, P < 0.05 and 7%, P < 0.05) (Figure 3E and 3G) were found. The above data indicated that the TJ protein expression, which was down-regulated under I/R conditions and can be prevented by the A2BAR antagonist.

Figure 4. A2BAR inhibition prevents the disruption of TJs induced by hypoxia. Caco-2 cells were cultured in MEM for 7 days under the normoxic condition, incubated for 24 h in serum-free medium, then exposed to hypoxia in the absence or presence of PSB1115 (10 μM) and then exposed to hypoxia for 6 h. The cells were subjected to an immunofluorescence analysis using antibodies against claudin-1 (A), occludin (B) and ZO-1 (C). The data are representative of three independent experiments.
Taken together, these data suggested that both hypoxia and I/R could down-regulate TJ protein expression, and inhibition of A2BAR could attenuate changes in TJ protein expression induced both by hypoxia and intestinal I/R.

Alternations in TJs induced by the A2BAR antagonist under hypoxia

To examine further the role of A2BAR on the cellular distribution of TJ proteins under the hypoxia condition, immunofluorescence was used. As shown in Figure 4A-C, claudin-1, occludin and ZO-1 under the normoxic condition were distributed primarily near the cell membrane in the epithelial cells and localized to the borders of the adjacent cells. In contrast, after the monolayers were exposed to hypoxia for 6 h, claudin-1, occludin and ZO-1 showed a typical rearrangement, with diffuse and discontinuous staining and significant disruptions (Figure 4A-C). However, this effect of hypoxia on the distribution of claudin-1, occludin and ZO-1 at the adjacent cell was prevented by the pretreatment with the A2BAR antagonist, PSB1115.

Taken together, our results indicate that in vitro hypoxia is associated with rearrangements and the disruptions of the TJ proteins, and that an A2BAR antagonist can attenuate the hypoxia-induced the changes of TJ protein.

A2BAR antagonist prevents the reduction of TER under hypoxia and intestinal I/R

In vitro study: To verify the role of the A2BAR in TJ function, the epithelial permeability was detected by measuring TER to assess the functional integrity. After culturing for 4 days under normoxic conditions, the monolayers were exposure to hypoxia for 6 h, resulting in a decrease in TER. As shown in Figure 5A, compared with the monolayers under normoxia (84.8 ± 3.64 Ω/cm²), hypoxia resulted in a significant decrease in the TER (33.2 ± 2.84 Ω/cm²) (P < 0.05). PSB1115 treatment significantly attenuated this TER decrease (51.4 ± 2.60 Ω/cm²) (P < 0.05) when compared to the monolayers in the absence of PSB1115 under hypoxia (33.2 ± 2.84 Ω/cm²) (P < 0.05). In contrast, PSB1115 had no effect on the TER in Caco-2 monolayers for maintaining the IBF under normoxia (Figure 5A) (P < 0.05). These data demonstrate that hypoxia induces an increase in intestinal permeability and that the inhibition of A2BAR could significantly attenuate this loss of intestinal barrier function.

In vivo study: To further confirm the role of A2BAR in the regulation of intestinal barrier function, we next investigated the changes of intestinal epithelial barrier function by measuring TER with Ussing chamber instrumentation [24]. Baseline TER (0 min after tissue mounting) was 224.17 ± 6.76 Ω/cm² in the control group and 129.41 ± 2.02 Ω/cm² in the I/R group. Intestinal I/R resulted in a significant decrease in the TER (94.46 ± 4.75) (Figure 5B). However, A2BAR antagonist pretreatment significantly attenuated the reduction in the TER as compared to the I/R group (163.98 ± 14.07 vs. 129.41 ± 2.02 Ω/cm², P < 0.001) (Figure 5B). These results suggest that A2BAR
antagonist pretreatment significantly improved the hypoxia and intestinal I/R-induced epithelial barrier dysfunction.

Discussion

In the present study, we addressed the role of A2BAR in the regulation of intestinal barrier function under hypoxic and intestinal I/R conditions. We demonstrate that, in the presence of A2BAR antagonist, PSB1115, the expression levels of claudin-1, occludin and ZO-1 were increased under hypoxia and I/R. When the intestinal epithelial cells or mice were pretreated with PSB1115, the TER also increased significantly compared to the epithelial cells and mouse in the absence of PSB1115 under hypoxic and I/R condition, to levels similar to that in control conditions. Taken together, our studies provide evidence that the inhibition of the A2BAR can prevent the disruption of intestinal tight junctions and maintain the intestinal barrier function under hypoxic and intestinal I/R conditions.

The intestinal epithelial barrier provides the primary determinant of intestinal permeability. Along with the plasma membrane, the intercellular tight junctions (TJs) are the primary cellular determinants of epithelial barrier function [28]. Due to the functional and structural integrity of TJs, intestinal permeability is typically low under normal conditions. However, any physiological or pathological changes that induce alternations in TJ expression and/or arrangement may result in increased permeability of the intestine. The disruption of tight junction structure can be both a cause and an effect of many diseases, and intestinal epithelial barrier dysfunction can be found in many disease states, such as inflammatory bowel disease [12], celiac disease [13], intestinal I/R [14, 29] and other hypoxia conditions [29-31].

Intestinal I/R injury is a serious and frequent clinical problem in trauma, burn and the perioperative period in surgical patients. Many major surgical procedures, including aortic vascular surgery, intestinal or liver transplantation, as well as hepatic and pancreatic resections, require an obligatory period of intestinal ischemia that is an important determinant of short- and long-term outcomes [32-34]. Several changes may occur in the intestinal mucosa after acute intestinal I/R, including an increase in the mucosal epithelial permeability and a decline in intestinal barrier function. Damage to the mucosa includes epithelial shedding, bacterial translocation, disordered mucosal permeability, and alteration of the absorptive function [35]. During intestinal I/R, alterations of intestinal blood supply and inflammatory activation can result in severe intestinal hypoxia.

Hypoxia is a common state in many physiological and pathophysiological processes. Previous studies from Eltzsching [36] demonstrate that hypoxia can markedly induce the accumulation of extracellular adenosine and mediate cell function through the activation of different adenosine receptors [37]. The A2BAR, a G protein-coupled receptor, is the predominant adenosine receptor expressed in intestinal epithelial [38] and endothelial cells [18, 26, 39, 40] during hypoxia. Depending on the tissue and cell type, the biological effect of the A2BAR presents a protective or detrimental effect under different conditions. This dichotomous effect of A2BAR activation has also been observed in studies focusing on the heart and brain in addition to the gut. For example, a protective role of the A2BAR has been demonstrated to attenuate endotoxin-induced sepsis by regulating inflammation and vascular adhesion [41] and against cardiac fibrosis by mediating the proliferation of cardiac fibroblastic [42]. Its protective role also can be found in dampens hypoxia-induced vascular leakage [19, 20]. Treatment with a selective A2BAR agonist attenuated intestinal I/R injury in a mouse model, indicating the A2BAR as a potential therapeutic target during intestinal I/R injury [16]. Previous studies demonstrated that hypoxia could disrupt TJ gene expression and induce the loss of barrier function [29]. All these studies suggest that the activation of the A2BAR is involved in the regulation of intestinal TJ expression and the maintenance of the epithelial barrier function.

Our experimental paradigm used 6 h of hypoxia or 6 h of I/R as treatment models, and we showed a decrease in claudin-1, occludin and ZO-1 expression after hypoxia and I/R. We also demonstrated that hypoxia and I/R is associated with the disruption and rearrangement of TJ proteins. Pretreatment with A2BAR antagonist before hypoxia or intestinal I/R could prevent this down-regulation of claudin-1, occludin and
ZO-1 expressions and the loss of barrier function.

In addition, we investigated the role of A2BAR in the distribution of TJs using immunofluorescence staining. Claudin-1, occludin and ZO-1 are localized to the borders of adjacent cells under the normoxic condition, however, after the exposure to hypoxia, claudin-1, occludin and ZO-1 showed a typical rearrangement, with diffuse and discontinuous staining and significant disruption. Interestingly, this effect of hypoxia on the distribution of claudin-1, occludin and ZO-1 in the adjacent cells was prevented by the A2BAR antagonist, PSB1115 pretreatment. This study suggests that the activation of A2BAR is integrally involved in this hypoxia-induced TJ protein loss and rearrangement.

To better determine the role of the A2BAR in TJ function, the epithelial permeability was also detected by measuring TER to assess the functional integrity of our cell culture model and animal model. We found that the pretreatment with A2BAR antagonist before cells were exposed to hypoxia and before the mouse being operated attenuated the hypoxia and IR-Induced changes in the TER. These results indicate that inhibit the A2BAR can maintain the intestinal epithelial barrier function under hypoxia and intestinal I/R.

In conclusion, the present study has demonstrated novel insights into the role of A2BAR in modulation of intestinal barrier function under hypoxic or intestinal I/R condition. Activation of A2BAR under hypoxic or intestinal I/R condition results in low expression of TJ proteins and high epithelial permeability. Thus, inhibition of A2BAR with specific antagonist could significantly attenuate these changes. Future investigation is needed to elucidate the molecular mechanism responsible for the role of the A2BAR in modulates intestinal epithelial permeability and TJ expression under hypoxic and I/R condition.

Acknowledgements

This work was supported through funding from the National Natural Science Foundation of China (NSFC 81330013 and NSFC 81272078 to H.Y.), and program for Changjiang scholars and innovative research team in University (IRT 13050 to H.Y.).

Address correspondence to: Dr. Hua Yang, Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China. Tel: (86) 23-687-55705; E-mail: huayang@tmmu.edu.cn

References

[11] Gonzalez-Mariscal L, Tapia R and Chamorro D. Crosstalk of tight junction components with...
A2B receptor in intestinal barrier function

A2B receptor in intestinal barrier function

[40] Stenfeldt AL and Wenneras C. Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 2004; 112: 605-614.
