Original Article
Stability of preclinical models of aggressive renal cell carcinomas

Mariana Varna1,2,3*, Guilhem Bousquet1,2,3*, Irmine Ferreira1,2,3, Marie Goulard1,2, Morad El-Bouchtaoui1,2,3, Pierre Mongiat Artus1,2,5, Jérome Verine1,2,3, Eric de Kerviler1,2,6, Lucie Hernandez1, Hany Soliman4, Jean-Paul Feugeas4, Anne Janin1,2,3*, Philippe Bertheau1,2,3*

Received March 31, 2014; Accepted May 25, 2014; Epub May 15, 2014; Published June 1, 2014

Abstract: Renal-cell carcinomas (RCC) are often resistant to conventional cytotoxic agents. Xenograft models are used for in vivo preclinical studies and drug development. The validity of these studies is highly dependent on the phenotypic and genotypic stability of the models. Here we assessed the stability of six aggressive human RCC xenografted in nude/NMRI mice. We compared the initial samples (P0), first (P1) and fifth (P5) passages for the following criteria: histopathology, immunohistochemistry for CK7, CD10, vimentin and p53, DNA allelic profiles using 10 microsatellites and CGH-array. Next we evaluated the response to sunitinib in primary RCC and corresponding xenografted RCC. We observed a good overall stability between primary RCC and corresponding xenografted RCC at P1 and P5 regarding histopathology and immunohistochemistry except for cytokeratin 7 (one case) and p53 (one case) expression. Out of 44 groups with fully available microsatellite data (at P0, P1 and P5), 66% (29 groups) showed no difference from P0 to P5 while 34% (15 groups) showed new or lost alleles. Using CGH-array, overall genomic alterations at P5 were not different from those of initial RCC. The xenografted RCC had identical response to sunitinib therapy compared to the initial human RCC from which they derive. These xenograft models of aggressive human RCC are clinically relevant, showing a good histological and molecular stability and are suitable for studies of basic biology and response to therapy.

Keywords: Xenograft, preclinical model, renal cell carcinoma, tumor phenotype, tumor genotype

Introduction
Renal cell carcinomas (RCC) are hypervascularized tumors with high metastatic potential. They are often resistant to conventional cytotoxic agents [1, 2]. Therapies targeting angiogenesis have improved the prognosis of patients with metastatic RCC [3]. However, secondary resistance to this treatment is often observed [4, 5]. For this reason, development of animal models based on xenografts of the different types of RCC is essential to test new therapies via sequential analyses. Strategies to obtain these models are injection of established human tumor cell lines or direct implantation of primary human cancer samples into immunodeficient nude or SCID mice [6-9].

The relevance of xenografted models depends on their similarity to the histological, biochemical and metastatic patterns observed in the initial human cancer [6, 10, 11]. Human cancer xenografts can be useful preclinical models to study response to chemotherapy [12-14]. However, in some studies, xenograft models inconsistently predicted the efficiency of novel therapies in selected human tumors [15]. For these reasons a validation of phenotypic and genotypic stability of xenografted models is an important prerequisite for the use of these models in preclinical studies.
Renal cancer xenografts stability

Table 1. Histopathological and immunohistochemical characteristics (CK7, CD10, Vimentin, p53) of six renal tumors in patients (P0) and in xenografts at 5th passage (P5)

<table>
<thead>
<tr>
<th>Tumor ID</th>
<th>Age of patient (years)</th>
<th>Sex</th>
<th>Tissue sample</th>
<th>H&E</th>
<th>Fuhrman nuclear grade</th>
<th>TNM</th>
<th>Metastasis</th>
<th>CK7</th>
<th>CD10</th>
<th>Vimentin</th>
<th>p53</th>
</tr>
</thead>
<tbody>
<tr>
<td>K6-104</td>
<td>60</td>
<td>M</td>
<td>B</td>
<td>pRCC</td>
<td>4</td>
<td>4</td>
<td>P30NvM1</td>
<td>neg</td>
<td>neg</td>
<td>pos</td>
<td>80%</td>
</tr>
<tr>
<td>K8-128</td>
<td>73</td>
<td>M</td>
<td>SS</td>
<td>ccRCC</td>
<td>2</td>
<td>2</td>
<td>P14NvM1</td>
<td>lung</td>
<td>10%</td>
<td>20%</td>
<td>90%</td>
</tr>
<tr>
<td>K8-447</td>
<td>68</td>
<td>M</td>
<td>SS</td>
<td>ccRCC</td>
<td>4</td>
<td>4</td>
<td>P4NvM1</td>
<td>lung</td>
<td>neg</td>
<td>pos</td>
<td>80%</td>
</tr>
<tr>
<td>K8-614</td>
<td>57</td>
<td>M</td>
<td>SS</td>
<td>ccRCC</td>
<td>2</td>
<td>4</td>
<td>P30NvM1</td>
<td>lung</td>
<td>60%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>K9-162</td>
<td>64</td>
<td>M</td>
<td>SS</td>
<td>ccRCC</td>
<td>3</td>
<td>3</td>
<td>P14NvM1</td>
<td>bone</td>
<td>neg</td>
<td>neg</td>
<td>neg</td>
</tr>
<tr>
<td>K9-229</td>
<td>63</td>
<td>M</td>
<td>B</td>
<td>ccRCC</td>
<td>4</td>
<td>4</td>
<td>P30NvM1</td>
<td>lung</td>
<td>50%</td>
<td>100%</td>
<td>60%</td>
</tr>
</tbody>
</table>

ccRCC: clear-cell renal-cell carcinoma; pRCC: papillary renal-cell carcinoma; src: sarcomatoid; B: biopsy; SS: surgical specimen; C: cytoplasmic staining; N: nuclear staining.

Table 2. Microsatellite markers used for characterisation of initial human tumors and their xenografts

<table>
<thead>
<tr>
<th>Microsatellite marker</th>
<th>Locus</th>
<th>% heterozygosity</th>
<th>Size (base pair)</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3S1289</td>
<td>3p14.3</td>
<td>81</td>
<td>235-253</td>
<td>VHL</td>
</tr>
<tr>
<td>D3S1597</td>
<td>3p25.3</td>
<td>80</td>
<td>162-180</td>
<td>VHL</td>
</tr>
<tr>
<td>D3S3611</td>
<td>3p25.3</td>
<td>82</td>
<td>107-137</td>
<td>VHL</td>
</tr>
<tr>
<td>D5S2095</td>
<td>5p15.3</td>
<td>89</td>
<td>141-183</td>
<td>C50%</td>
</tr>
<tr>
<td>D6S440</td>
<td>6q25.1</td>
<td>67</td>
<td>269-285</td>
<td>ESR1</td>
</tr>
<tr>
<td>D8S1820</td>
<td>8p21.1</td>
<td>74</td>
<td>103-117</td>
<td>Elongation protein 3</td>
</tr>
<tr>
<td>D9S162</td>
<td>9p22.1</td>
<td>74</td>
<td>172-196</td>
<td>SLC24A2</td>
</tr>
<tr>
<td>D9S171</td>
<td>9p21.3</td>
<td>80</td>
<td>159-177</td>
<td>MLLT3</td>
</tr>
<tr>
<td>D17S802</td>
<td>17q25.3</td>
<td>82</td>
<td>166-183</td>
<td>BIRC5</td>
</tr>
<tr>
<td>D17S1879</td>
<td>17p13.1</td>
<td>82</td>
<td>141-173</td>
<td>P53 intron</td>
</tr>
</tbody>
</table>

We established a panel of six human RCC xenografts in nude mice and we evaluated the phenotypic and genotypic stability of these models. Immunohistochemical markers known to be frequently expressed in RCC (CD10, CK7, vimentin) or involved in oncogenesis (p53) were tested at P0, P1 and P5. DNA microsatellite profiles and CGH-array were performed at different passages. To validate these preclinical models we compared the response to an anti-angiogenic treatment (sunitinib) in tumor xenograft and in the initial tumor.

Materials and methods

Patients and tissue samples

Fresh samples were obtained from 40 human renal tumors between 2006 and 2009. A piece of tumor tissue was immediately transported in RPMI-1640 to the Animal facility for xenografting into nude mice. Informed consent was obtained from each patient. The study was approved by the University Board Ethics Committee, and conducted in accordance with the Declaration of Helsinki. Other tumor sam-
Renal cancer xenografts stability

Samples were provided by Tumrotheque of Saint Louis Hospital (Paris, France), following the national ethics and legal French rules for patient information and consent. Histopathological features of the 6 RCC that achieved successful xenograft are described in Table 1.

For patients with metastatic renal cell carcinoma treated with sunitinib, tumor response was assessed every three months on computed tomography according to modified RECIST (response valuation criteria in solid tumors) criteria [16], and the best response was considered, i.e. complete response, partial response, stable disease or progression disease.

Figure 1. Tumor xenograft procedure. Time lapse for primary tumor xenograft and the subsequent passages (A); Mitotic index (B) and mean number of blood vessels for initial tumor and tumor xenografts (C); *P < 0.001.

For the initial xenograft, 5 mm³ human tumor fragments were grafted sub-cutaneously in 5 to 10 mice under xylasin (10 mg/kg body weight) and ketamin anaesthesia (100 mg/kg body weight). For each further passage, 10 mm³ fragments were xenografted into five mice.

A clinical score was assessed daily and tumor growth measured in two perpendicular diameters with a calliper. Tumor volume was calculated as V = L x l²/2, L being the largest diameter (length), l the smallest (width) [13, 17]. Mice were euthanized when the tumors approached 1500 mm³.

For each mouse, the tumors, as well as the different organs, were systematically analysed. Tumors were dissected and cut into three parts: one part was immediately snap-frozen in liquid nitrogen, one part was formalin-fixed and paraffin-embedded, and a third part was used for the new passage.

Experimental sunitinib treatment

Three xenografted tumors K6-194, K8-614 and K9-162, were treated with sunitinib. When
tumors reached a volume of 400 to 600 mm3, five mice received 20 mg/kg/day sunitinib diluted in 0.9% NaCl by gavage for 35 days. Five other mice were untreated and used as controls. Tumor growth was followed by measuring tumor volume for 35 days using ultrasound imaging (AplioXT, Toshiba, France). Results were expressed as mean ± standard error of the mean (SEM).

Phenotype analyses

The initial surgical sample and xenograft samples were fixed in AFA (alcohol-formalin-acetic acid) for three hours and embedded in paraffin. 2 µm thick sections were stained with hematoxylin and eosin (H&E). Histopathological features of patient tumor tissues were compared with those in the corresponding xenografts on H&E sections.

Immunohistochemical (IHC) studies were carried out with the following primary antibodies: CK7 monoclonal mouse anti-human antibody (DakoCytomation, France, clone OV-TL 12/30) at 1:20 dilution; vimentin monoclonal mouse anti-human antibody (DakoCytomation, France, clone V9) at 1:100 dilution; p53 monoclonal mouse anti-human antibody (Dakocytomation, France, clone DO-7) at 1:50 dilution; CD31 monoclonal rat anti-mouse antibody (Dianova, Germany, clone SZ31) at 1:20 dilution. All the immunostainings were performed in an automated immunostainer (Ventana Medical System, France).

Location of staining and percentage of stained cells were noted by two pathologists (PB, JV). Mitotic counts were determined on 10 microscopic high-power fields (x400).

Results for mitotic counts and vessels counts were expressed as mean ± standard error of the mean (SEM).

Genomic analyses

Tumor cells were obtained from tissue sections using microdissection (Palm, Germany).
DNA purification was performed with Qiagen kit. Two-hundred μL AL buffer were added to tissue and microdissected tumor cells, homogenized and incubated for 10 minutes at 56°C. Two-hundred μL 100% ethanol (Sigma, France) were added. The mixture was transferred to a QIAamp column and centrifuged for 1 minute at 8,000 rpm (5.9 rcf). The column was put in a new collection tube, 500 μL AW1 buffer were added and centrifuged for 1 minute. 500 μL AW2 buffer were added and the column was centrifuged for 1 minute at 10,000 rpm (9.3 rcf). Elution was performed by adding 25 μL elution buffer, incubating for 5 minutes at room temperature followed by centrifugation for 1 min. at 10,000 rpm (9.3 rcf).

For allelic profiles analysis, Polymerase Chain Reaction (PCR) was performed using 10 ng DNA for each PCR. Characteristics of the ten microsatellite dinucleotide repeat markers are given in Table 2. The PCR mix contained 1U Taq Gold (Applied Biosystems, Foster City, CA, USA), 2.5-4 mM MgCl₂, 0.2 mM dNTP, 0.2 μM labeled forward primers (NED™, FAM (6-carboxyfluorescein) or VIC™) and 0.2 μM non-labelled reverse primers. The PCR final volume was 20 μL. Thirty-five cycles of PCR were performed. After denaturation, the PCR products were run on ABI PRISM 310 Genetic Analyser [18]. The analysis of the migration data was performed with Genescan 3.1 software (Applied Biosystems). Fluorescent allelic profiles obtained from tumors at P0, P1 and P5 were compared. All profiles were verified with two different experiments.

Comparative genomic hybridization (CGH) analysis

Genomic DNA was isolated from initial renal tumors and from xenografted samples using DNeasy MiniKit (Qiagen, France) according to the manufacturer’s protocol.

CGH labeling and hybridization were performed using high-density 244K arrays from Agilent Technologies, as recommended by the manufacturer. Genomic DNA (1 μg) from the universal reference sample (Agilent, France) and from each experimental sample was double-digested with AluI and RsaI (Promega, Madison, WI) for 2 hours at 37°C. The digested DNAs were labeled with random primers using Agilent Genomic DNA Labeling Kit Plus (Agilent Technologies) for 2 hours at 37°C, according to the manufacturer’s instructions. Tumor DNA and universal reference sample DNAs were labeled with Cy5-dUTP and Cy3-dUTP, respectively. Labeled products were purified with Microcon YM-30 filters (Millipore, Billerica, MA). Tumor DNA and reference DNA (G 147A30 004405 Promega, France) were mixed and hybridized with Human Cot I DNA (Invitrogen) at 65°C for 24 hours. Arrays were scanned with an Agilent DNA Microarray Scanner (G2565BA). Log2 ratios were determined with Agilent Feature Extraction software (v 9.1.3.1) and the

Table 3. Microsatellite analysis on initial tumors (P0) and xenografted tumors at 1st (P1) and 5th (P5) passage in mice; ▲ one allele; ▲▲ two alleles; ▲▲ two alleles of different sizes compared to alleles in P0. Non-analysable profiles are noted NA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K5-194</td>
<td>P0</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>▲</td>
</tr>
<tr>
<td>K5-128</td>
<td>P0</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>▲</td>
</tr>
<tr>
<td>K3-447</td>
<td>P0</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>▲</td>
</tr>
<tr>
<td>K5-174</td>
<td>P0</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>▲</td>
</tr>
<tr>
<td>K5-182</td>
<td>P0</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>▲</td>
</tr>
<tr>
<td>K5-283</td>
<td>P0</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>▲</td>
</tr>
</tbody>
</table>
Renal cancer xenografts stability

A

K9-162 xenograft

D8S1820

D17S1879

D9S171

D17S802

P0

113bp

156bp

165bp

183bp

170bp

170bp

185bp

P1

P5

B

P0

tumor kidney

183/185 bp

P1

mouse 1

181/185 bp

mouse 2

181/185 bp

mouse 3

181/185 bp

mouse 4

181/185 bp

mouse 5

181/185 bp

P5

C

D

P0

xenografted tumor

P1

P5
global quality of the individual microarrays used in the experiment was validated against the quality metrics (QCmetrics) of this software. Results were analyzed with Agilent’s CGH Analytics v3.5 software, and copy number aberrations were detected using the Aberration Detection Method algorithm 2 (ADM-2) using a threshold value of 6.0.

Results

Histopathological characteristics of xenograft ed human renal tumors

Between 2006 and 2009, 40 kidney tumor samples were subcutaneously grafted into nude mice. Thirty four (85%) primary tumors either developed only as a small tumor less than 3 mm in mice at first passage and could not be further transplanted (n = 14 primary tumors), either produced no engraftment at all (n = 20 primary tumors). These tumors had a Fuhrman nuclear grade 1, 2 or 3.

Six tumors (15%) showed full xenograft development up to the 5th passage on mice. Clinico-pathological data for the six human RCC and the corresponding xenografts in mice at P1 and P5 are given in Table 1. The median age of the 6 patients was 64 and all patients already had distant metastases at time of initial diagnosis. One RCC had sarcomatoid cells and one tumor was papillary RCC. The other four RCC contained only clear cells. Fuhrman’s nuclear grade was high (3 to 4) for 5 of the 6 RCC. In all six cases, histopathological analysis on H&E sections showed similar morphology of the xenografted tumors and of the corresponding primary tumors, even for the tumor with sarcomatoid changes (K8-614) which showed a double differentiation until the 5th passage.

The preclinical model

We observed in xenografted mice that the speed of tumor growth progressively increased according to the passage: for the development of a 1500 mm³ graft at P1, it took 5 months on average, compared to 1.5 months at P5 (Figure 1A). In all mice we did not observe distant metastasis in sampled organs: lung, liver, spleen, kidney, ovary, bone marrow and brain. There was no significant difference in mitotic index between initial tumors and xenografted tumors at P1 and P5, except for K8-447 which showed an increased number of mitoses at P5 (P < 0.001) (Figure 1B). Density of blood vessels in xenografted RCC determined using anti mouse CD31, was not statistically different across passages using (Figure 1C).

Histopathology stability from P0 to P5

We assessed by IHC the expression of four protein markers, CK7, CD10, vimentin and p53, for all primary primary RCC (Table 1). In five out of six cases CK7 expression was unchanged at P5. An example for K9-162 is given in Figure 2A. For one case, K8-614 xenograft, the RCC with sarcomatoid cells, showed a strong CK7 expression at P5 (60% positive cells) while P0 was negative (Figure 2B).

CD10 and vimentin immunostainings were unchanged from P0 to P5 for all six tumors. P53 nuclear expression was unchanged in all cases. In only one case (K8-128) a significant cytoplasm staining was found at P5.

Genotypic stability on microsatellite profiles

To determine whether serial xenografts induce changes in genetic profiles, we assessed microsatellite profiles at P0, P1 and P5. Characteristics of the 10 microsatellite markers used in the present study are shown in Table 2 and were selected because of their frequent deletion in RCC. The microsatellite profiles obtained are shown in Table 3. Out of 60 groups of P0-P1-P5 profiles, 44 groups had fully available microsatellite data and could be analyzed. Stability was observed in 66% for all markers. When changes were observed they
were of two types: allelic number changes (in 11/44 groups, 25%) or allelic size changes (in 4/44 groups, 9%) (Figure 3A). When present in a tumor in one mouse, changes were also pres-
Renal cancer xenografts stability

Table 5. CGH analyses in K8-614 at P0 and at P5

<table>
<thead>
<tr>
<th>chromosome</th>
<th>cytoband</th>
<th>K8-614 P0 ampl/del</th>
<th>K8-614 P5 ampl/del</th>
<th>example of genes in the region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p36.23</td>
<td>1.13</td>
<td>4.01</td>
<td>PER3, VAMP3</td>
</tr>
<tr>
<td>1</td>
<td>p31.1</td>
<td>1.67</td>
<td>3.34</td>
<td>NEGR1, TNNI3K, CRYZ, PIGK</td>
</tr>
<tr>
<td>1</td>
<td>q24.2</td>
<td>-3.5</td>
<td>-2.88</td>
<td>NME7, NME7</td>
</tr>
<tr>
<td>2</td>
<td>p16.1</td>
<td>-3.64</td>
<td>-5.66</td>
<td>SMEC2</td>
</tr>
<tr>
<td>2</td>
<td>p13.1</td>
<td>-3.79</td>
<td>4.59</td>
<td>SLC4A5, SLC4A5, DQX1</td>
</tr>
<tr>
<td>3</td>
<td>p21.31</td>
<td>-4.69</td>
<td>-2.68</td>
<td>SCAP</td>
</tr>
<tr>
<td>3</td>
<td>q26.1</td>
<td>-3.86</td>
<td>-3.57</td>
<td>PPM1L, CT64</td>
</tr>
<tr>
<td>4</td>
<td>q13.1</td>
<td>-2.28</td>
<td>-5.44</td>
<td>CCRN4L</td>
</tr>
<tr>
<td>4</td>
<td>q28.3</td>
<td>-5.394</td>
<td>-5.55</td>
<td>PCDH10</td>
</tr>
<tr>
<td>4</td>
<td>q34.1</td>
<td>-3.28</td>
<td>-5.55</td>
<td>GALNTL6</td>
</tr>
<tr>
<td>6</td>
<td>p22.3</td>
<td>-3.87</td>
<td>-3.14</td>
<td>RNF144B</td>
</tr>
<tr>
<td>6</td>
<td>q12</td>
<td>-3.87</td>
<td>-5.2</td>
<td>EYS</td>
</tr>
<tr>
<td>7</td>
<td>q21.11</td>
<td>-3.87</td>
<td>-3.18</td>
<td>SEMA3D</td>
</tr>
<tr>
<td>7</td>
<td>q22.1</td>
<td>-6.05</td>
<td>-2.35</td>
<td>ZAN</td>
</tr>
<tr>
<td>7</td>
<td>q34</td>
<td>-3.68</td>
<td>-3.7</td>
<td>ATP6V0A4, KIAA1549, KLURG2, ADCK2</td>
</tr>
<tr>
<td>9</td>
<td>p11.2</td>
<td>-2.87</td>
<td>-3.44</td>
<td>UBE2R2, DCAF12</td>
</tr>
<tr>
<td>10</td>
<td>q21.3</td>
<td>-2.5</td>
<td>-2.5</td>
<td>DNAJC12</td>
</tr>
<tr>
<td>14</td>
<td>q32.33</td>
<td>-2.87</td>
<td>1.35</td>
<td>PPP1R13B, ZFYVE21, MIR203,</td>
</tr>
<tr>
<td>18</td>
<td>q23</td>
<td>-3.81</td>
<td>-5.69</td>
<td>MBP, GALR1, SALL3, TXNL4A</td>
</tr>
</tbody>
</table>

Genotypic stability on CGH-arrays

We performed comparative genomic hybridization at P0 and P5 for two RCC (K9-162, K8-614) with enough tissue material available (surgery) at P0. Overall stability of the xenografted tumor genome was observed. Genetic abnormalities detected in initial RCC (P0) were also detected in the corresponding xenografts at P5. Sometimes new deletions or amplifications were detected at P5. Some examples are given in Tables 4 and 5.

Comparison of response to sunitinib in patients and xenografted human tumors

Follow up data of patients under sunitinib treatment was available for three patients with RCC. Two patients showed a lack of response and one patient showed stable disease after 3 months of treatment with sunitinib followed by secondary resistance. When we studied the response to sunitinib in the three corresponding xenografted RCC, we found similar patterns of response (Figure 4).

Discussion

RCC remains a cancer with poor prognosis and short median survival due to frequent metastatic progression [19]. Xenografting human RCC into nude mice offers the opportunity to test new therapies and even personalized therapy [20]. We explored this stability on six xenografted RCC that showed “full engraftment” not only at P1 but also in further passages. In the 14 cases with a small tumor that developed only at P1, the tumor cells were often surrounded by numerous murine lymphocytes. These “incomplete engraftment” cases were mostly...
Renal cancer xenografts stability

early stages tumors in patients, therefore probably less aggressive tumors.

All tumors were xenografted subcutaneously in the brown fat. There is no consensus regarding the best site (under the renal capsule or under the skin) to obtain the best RCC engraftment [21, 22]. The time required for engraftment at P1 was longer than the time required for engraftment at the following passages. This was not linked to the volume of grafted RCC or to the proliferative index, or to the microvessel density. A similar discrepancy between the time necessary for the engraftment at P1 and at P5 was reported in human pancreatic cancer xenografts [23]. This could be linked to the new murine environment at P1 or to the initiation of new blood vessels in the xenografted human cancers. A high degree of similarity between xenografts and initial cancers in terms of histopathology, immunohistochemistry, as well as mutation status, has been reported for non-small cell lung cancer [24-26], gynecological tumors [27], uveal melanoma [28], gastroesophageal junction cancer [8] and breast cancers [11]. In our series, all six RCC xenografts reproduced the histopathological aspects of the primary RCC including the cases with papillary patterns or sarcomatoid cells. Approximately 8% of ccRCC have components with sarcomatoid changes. Sarcomatoid cells are thought to arise from clear-cell tumors with an accumulation of genetic alterations [29, 30] and have been associated with poor prognosis.

Figure 4. Tumor response profile for sunitinib treatment on three xenografted kidney tumors. A good correlation between tumor xenograft and patient data was observed; *P < 0.005.
The xenograft model K8-614 with sarcomatoid changes showed histopathological stability until the 5th passage. The overall rates of clear cells and sarcomatoid areas were similar between P0 and P5, therefore making this xenograft a good model of this RCC type.

We observed some differences for CK7 in K8-614 xenograft and for p53 in K8-128 xenograft. This may account for possible cytokeratin microfilaments accumulation and for possible modifications of p53 nuclear export process after several passages in mice. This was concordant with other studies in the literature where some minor changes in immunohistochemical patterns have been observed [28].

Regarding genomic stability, we observed an overall good preservation of the allelic profiles between P0, P1 and P5 (66% identical allelic profiles). Changes were observed in 34% of allelic profiles and were most often present in all mice at the same passage, both in P1 and P5. Two changes were observed only in P5 and were not present in P1. Recently, using SNP-arrays or gene expression analyses, it has been showed very close genotypes between primary renal tumors and xenografted tumors [22, 32, 33]. Our study not only included xenografts at first passage but also at fifth passage, showing that most changes occurred between P0 and P1 and not after P1. This implies that these aggressive tumor xenografts are intrinsically stable and changes observed at P1 are likely due to intra-tumor heterogeneity of primary tumors [34, 35] or represent a local subclone present in the grafted sample [9].

The fact that tumor grafts in mice can maintain the genomic and gene expression characteristics of the original tumors has been demonstrated in breast cancer [13, 14] and in ovarian and uterine cancers [27]. Another study comparing the genomic characteristics of several tumor types and their derived xenografts, however not including RCC, showed similar genomic profiles [36].

We also evaluated the response to sunitinib in three tumor xenografts (K6-194, K8-614, K9-162) since these three patients were treated with this drug. We obtained similar response profiles between xenografts and corresponding initial tumors, confirming the value of sub-cutaneous xenograft models in predicting response to chemotherapeutic agents [24].

In conclusion, these aggressive human renal tumors xenografted into mice showed a good phenotypic and genotypic stability with only minor differences occurring mostly between P0 and P1 and likely due to intra-tumor heterogeneity of primary tumors. Moreover, the xenografts treated with sunitinib showed treatment response profiles close to those of the initial tumors. These animal models obtained from human renal tumor samples could therefore be optimal for selection of initial therapy in these poor-prognosis tumors, and could also help in the development of new targeted treatments.

Acknowledgements
This study was supported by grants from Agence Nationale pour la Recherche (ANR-08-EBIO-022-22), ARC (CR/08/7968) Ibisa (RINR 1-2-3), Institut National du Cancer (INCa) and Tumorotheque of Saint Louis Hospital (Paris, France). We thank Ms. Angela Swaine for revision of the English language.

Disclosure of conflict of interest
None.

Address correspondence to: Dr. Philippe Bertheau, AP-HP-Hôpital Saint-Louis, Laboratoire de Pathologie, 1 avenue Claude Vellefaux, Paris, F-75010, France. Tel: +33 1 42 49 41 35; Fax: +33 1 42 49 49 22; E-mail: philippe.bertheau@sls.aphp.fr

References
Renal cancer xenografts stability

Renal cancer xenografts stability

...correlates with a poor clinical prognosis. Lab Invest 1999; 79: 879-888.

