Original Article

Expression of PBK/TOPK in cervical cancer and cervical intraepithelial neoplasia

Qiong Luo1,2,3*, Bin Lei1,2*, Shuguang Liu1,2, Yaowen Chen4, Wenjie Sheng1,2, Peixin Lin1,2, Wenxia Li1,2, Haili Zhu1,2, Hong Shen1,2

1Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China; 2Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou City, Guangdong Province, China; 3Department of Oncology, Leiyang People’s Hospital, Leiyang City, Hunan Province, China; 4Central Laboratory of Shantou University, Shantou City, Guangdong Province, China. *Equal contributors.

Received September 12, 2014; Accepted October 31, 2014; Epub October 15, 2014; Published November 1, 2014

Abstract: objectives: To evaluate the expression of PBK/TOPK (PDZ-binding kinase/T-LAK cell-originated protein kinase) and its clinical significance in cervical cancer and cervical intraepithelial neoplasia. Methods: PBK/TOPK expression was detected in 28 cases of low-grade cervical intraepithelial neoplasia (CINI), 62 cases of high-grade intraepithelial neoplasia and 80 cases of cervical cancer by immunohistochemistry (IHC). Then, the correlation between PBK/TOPK expression and clinicopathological features was quantitatively analyzed by measuring the positive unit (PU). Results: PBK/TOPK expression was significantly greater in cervical cancer than that in high-grade intraepithelial neoplasia and CINI (P < 0.05). Meanwhile, PBK/TOPK expression in high-grade intraepithelial neoplasia was significantly higher compared with that in CINI (P < 0.05). In addition, PBK/TOPK expression in cervical cancer significantly correlated with histological type, differentiation, lymph node metastasis, vaginal and cervical invasion, TNM stage and tumor size (P < 0.05). Conclusion: PBK/TOPK expression is closely associated with cervical cancer and cervical intraepithelial neoplasia, which may be served as a useful target for tumor diagnosis and immunotherapy.

Keywords: Cervical carcinoma, CINI, T-LAK, PDZ-binding kinase, quantitative analysis

Introduction

Cervical cancer is one of most common malignancy, whose incidence rate is gradually increasing in Chinese women [1, 2]. Although patients with cervical cancer have received surgery resection, radiotherapy and chemotherapy, the treatment effect remains unsatisfied. Recently, immunotherapeutic target has received greater attention, which may be effective in eradicating malignancy.

PBK/TOPK is a MAPKK-like serine/threonine kinase, which is hard to be detected in normal tissues except normal testis and fetal tissue [3, 4]. Studies have confirmed that PBK/TOPK prevailed in a variety of malignancies, such as lymphoma, leukemia, breast cancer and malignant peripheral nerve sheath tumors [5-8]. PBK/TOPK over-expression is contributed to cell growth and proliferation in breast cancer, colorectal cancer and Ewing sarcoma [9-11]. In lung cancer and colorectal cancer, patients with high-expression of PBK/TOPK have poorer prognosis [12-15]. Meanwhile, studies have confirmed that PBK/TOPK is correlated with apoptosis [16], inflammation [17] and mitotic regulation [18-20], and may be regulated by c-Myc signaling pathway [21].

However, whether PBK/TOPK expression is associated with cervical cancer and cervical intraepithelial neoplasia remains unknown. In this study, we aimed to evaluate the expression of PBK/TOPK and its clinical significance in cervical cancer and cervical intraepithelial neoplasia.

Materials and methods

Patients

All specimens were collected from the Department of Pathology of Nanfang Hospital, Leiyang People’s Hospital and affiliated hospi-
Expression of PBK/TOPK in cervical diseases

The expression of PBK/TOPK in different types of cervical tissues (40×). A. CINI; B. High-grade cervical intraepithelial neoplasia; C. Adenocarcinoma; D. Squamous carcinoma.

Figure 2. The PU values of PBK/TOPK expression in different types of cervical lesions. *P < 0.05, **P < 0.001.

Immunohistochemical staining

The procedures were performed as previously described [14]. Anti-PBK/TOPK antibody (dilu-
Expression of PBK/TOPK in cervical diseases

Table 1. Correlation between PBK/TOPK expression and clinicopathological features in cervical cancer (X ± s)

<table>
<thead>
<tr>
<th>Clinicopathological features</th>
<th>N</th>
<th>PU value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 44</td>
<td>42</td>
<td>20.98±8.21</td>
<td>0.246</td>
</tr>
<tr>
<td>≥ 44</td>
<td>38</td>
<td>21.26±6.88</td>
<td></td>
</tr>
<tr>
<td>Histological type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>70</td>
<td>21.78±6.79</td>
<td>0.012</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>6</td>
<td>19.23±11.27</td>
<td></td>
</tr>
<tr>
<td>Adenosquamous carcinoma</td>
<td>2</td>
<td>5.41±0.45</td>
<td></td>
</tr>
<tr>
<td>Carcinoid tumor</td>
<td>1</td>
<td>27.96±0.00</td>
<td></td>
</tr>
<tr>
<td>Small cell carcinoma</td>
<td>1</td>
<td>10.51±0.00</td>
<td></td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorly differentiated</td>
<td>21</td>
<td>25.61±4.89</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Well to moderately differentiated</td>
<td>55</td>
<td>19.82±7.67</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>11</td>
<td>28.05±5.31</td>
<td>0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>69</td>
<td>20.01±7.30</td>
<td></td>
</tr>
<tr>
<td>Vagina and cervix invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>6</td>
<td>24.06±1.65</td>
<td>0.008</td>
</tr>
<tr>
<td>Negative</td>
<td>74</td>
<td>20.88±7.81</td>
<td></td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>65</td>
<td>19.82±7.48</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>II-III</td>
<td>15</td>
<td>26.74±5.04</td>
<td></td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 1</td>
<td>26</td>
<td>18.37±8.37</td>
<td>0.037</td>
</tr>
<tr>
<td>> 1</td>
<td>54</td>
<td>22.44±6.84</td>
<td></td>
</tr>
</tbody>
</table>

Statistical analysis

All data were presented as means ± s.d and analyzed by SPSS 13.0 (SPSS, Chicago, IL, USA). PU values of PBK/TOPK in different cervical tissues were compared by ANOVA. The chi-square test was used to assess the correlation between PBK/TOPK expression and clinicopathological features. Statistical significance was defined as a P-value of < 0.05 in two-sided test.

Results

Expression of PBK/TOPK in cervical cancer and cervical intraepithelial neoplasia

PBK/TOPK expression was located in the nucleus or cytoplasm as orange or brown staining, but was hard to be detected in CINI tissues (Figure 1). The PU values of PBK/TOPK in cervical cancer and cervical intraepithelial neoplasia were showed in Figure 2. The results showed that PBK/TOPK expression in cervical cancer was significantly greater than that in high-grade intraepithelial neoplasia and CINI, respectively (P < 0.0001, P < 0.0001, respectively). Meanwhile, the expression of PBK/TOPK in high-grade intraepithelial neoplasia was also significantly higher compared with that in CINI (P = 0.001).

Correlation between PBK/TOPK expression and clinicopathological features in cervical cancer

Then, we evaluated the correlation between PBK/TOPK expression and clinicopathological features in cervical cancer. The results showed that PBK/TOPK expression was associated with histological type, differentiation, lymph node metastasis, vaginal and cervical invasion, TNM stage and tumor size, but no significant correlation with age (Table 1). The PU values of PBK/TOPK in poorly differentiated tumor were significantly greater than that in well to moder-
ately differentiated tumor ($P < 0.0001$). Patients with lymph node metastasis presented a higher level of PBK/TOPK PU compared with that those without lymph node metastasis ($P = 0.001$). Meanwhile, the PU values of PBK/TOPK in patients with vaginal and cervical invasion were significantly higher than that those without vaginal and cervical invasion ($P = 0.008$). The PU values of PBK/TOPK in patients with TNM stage II-III were significantly higher in comparison with that those with TNM stage I ($P < 0.0001$). In addition, PBK/TOPK PU was positively correlated with tumor size ($P = 0.037$).

Discussion

In this study, we are the first to report PBK/TOPK expression in cervical cancer and cervical intraepithelial neoplasia. In order to avoid subjective bias, PBK/TOPK expression was quantitatively evaluated by measuring the PU value. PU value is the protein expression intensity of positive cells calculated by Image-Pro Plus image analysis software, and the larger value represents the higher level of protein expression [26, 27]. Therefore, present results indicated that PBK/TOPK highly expressed in cervical cancer and high-grade intraepithelial neoplasia, but is undetectable in CINI. However, PBK/TOPK level in cervical cancer was significantly higher compared with that in high-grade intraepithelial neoplasia. Moreover, PBK/TOPK has been found to be undetectable in normal cervical tissue [28]. It is well known that low-grade intraepithelial neoplasia (CINI) and high-grade intraepithelial neoplasia have been considered as the precancerous lesion of cervical cancer, which closely associated with the occurrence of cervical cancer [29, 30]. Thus, our results confirm that PBK/TOPK expression is associated with the occurrence of cervical cancer, which may be also involved with the progression of cervical intraepithelial neoplasia. In addition, the level of PBK/TOPK expression may be beneficial to distinguish high-grade intraepithelial neoplasia and cervical carcinoma.

Meanwhile, we analyzed the correlation between PBK/TOPK expression and clinicopathological features in cervical cancer. The results showed that PBK/TOPK expression was correlated with histological type, differentiation, lymph node metastasis, vaginal and cervical invasion, TNM stage and tumor size. The expression of PBK/TOPK in different types of cervical cancer suggested that PBK/TOPK might be related to tumor heterogeneity, which was in line with the study reported in non-small cell lung cancer [14]. PBK/TOPK expression in poorly differentiated tumor was dramatically elevated than that in well to moderately differentiated tumor, which suggested that PBK/TOPK expression might be contributed to tumor differentiation. The correlation of PBK/TOPK with tumor size, lymph node metastasis, vaginal and cervical invasion and TNM stage indicated that PBK/TOPK expression might be involved with the progression and invasion of cervical cancer. Furthermore, Shih et al. and Lei et al. also reported that PBK/TOPK correlated with lymph node metastasis and TNM stage and affected patients’ prognosis in lung cancer [12, 14]. However, it is not yet clear whether PBK/TOPK expression will affect the prognosis in cervical cancer.

In conclusion, this study showed that PBK/TOPK is closely associated with cervical cancer and cervical intraepithelial neoplasia, which may be served as a useful target for tumor diagnosis and immunotherapy. Of course, our findings also need to be confirmed by further studies.

Acknowledgements

This study was supported by the Science and Technology Projects of Guangdong, China (No. 2010B060300001), the Fund Projects of Key Laboratory in Guangdong Province, China (2013GDDSIPL-01) and the Science and Technology Projects of Guangdong, China (No. 201300000192).

Disclosure of conflict of interest

None.

Address correspondence to: Hong Shen, Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou City 515000, Guangdong Province, China. E-mail: shenhong2013168@163.com

References

[2] Zhang MQ, Chen MZ. Analysis of 174 cases with cervical cancer in women under 35 years
Expression of PBK/TOPK in cervical diseases

[22] Shen H. Study on quantitative method of intensity of immunohistochemical staining (II). Jo-
Expression of PBK/TOPK in cervical diseases

