Original Article

Heme oxygenase 1 plays role of neuron-protection by regulating Nrf2-ARE signaling post intracerebral hemorrhage

Xiao-Ping Yin¹,², Dan Wu³, Jun Zhou¹, Zhi-Ying Chen², Bing Bao², Liang Xie¹

¹Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China; ²Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; ³Department of Neurology, The Sixth Hospital of Wuhan, Wuhan, China

Received November 16, 2014; Accepted December 24, 2014; Epub September 1, 2015; Published September 15, 2015

Abstract: The NF-E2 related factor 2 (Nrf2) could be activated in intracerebral hemorrhage (ICH), and trigger the expression of ARE regulated heme oxygenase 1 (HO-1) subsequently. This study aims to explore neuroprotection of HO-1 protein in regulating the Nrf2-ARE signaling pathway in ICH. In this study, the femoral artery injection method was used to establish the ICH model. The zinc porphyrin-9 (ZPP-IX) was used to inhibit the HO-1 expression in ICH rats. The ICH rats were randomly divided into 3 groups, ICH group, ZPP-IX (10 mg/kg) + ICH group and DMSO (10 mg/kg) + ICH group. Neurological scores were evaluated for the 3 groups. Double immunofluorescence staining method was employed to observe the co-expression of HO-1, Nrf2, NF-κB and TNF-α and CD11b in glia cells. Western blot and RT-PCR assay were used to detect the total Nrf2, binding Nrf2, HO-1, NF-κB and TNF-α expression. The results indicated that ZPP-IX could aggravate the neurological dyafunstions of ICH rats. The HO-1 level in ZPP-IX group was significantly decreased compared to the ICH group (P<0.05). The binding-Nrf2 protein was significantly increased in ZPP-IX group compared to ICH group (P<0.05). The NF-κB and TNF-α level were significantly increased in ZPP-IX group compared to ICH group (P<0.05). The ZPP-IX significantly inhibited the HO-1 and Nrf2, and enhanced NF-κB and TNF-α co-expressing with the CD11b compared to the ICH group (P<0.05). In conclusion, HO-1 protein regulates the Nrf2-ARE pathway in ICH model by inhibiting the Nrf2 entering nucleus and activating the NF-κB and TNF-α expression.

Keywords: Intracerebral hemorrhage, heme oxygenase 1, Nrf2-ARE signaling, zinc porphyrin-9

Introduction

Intracerebral hemorrhage (ICH) is an important kind of stroke, which with higher morbidity and mortality [1, 2]. The previous studies have indicated that many inflammatory cytokine participates in the process of the pathogenesis of ICH [3]. Clinically, the occurrence of ICH may influence the brain function, especially for the cognitive abilities, and even cause the cognitive decline or cognitive impairment [4]. The previous reports have showed that the Nrf2-ARE could be activated in intracerebral hemorrhage [5, 6]. The Nrf2 almost exists in all the types of the cells in the brain, such as microglia and neuron [7]. The activated Nrf2 could trigger the expression of ARE regulated heme oxygenase (HO-1), and play the role of anti-oxidative and anti-inflammatory, which could play the neuroprotective function in a further step [8]. Wang et al. [9] also indicated that when the Nrf2 gene was knocked out, the neurological function could be damaged after the ICH occurrence. The mechanism may relate with the apoptosis and reactive oxygen species accumulation in cells, which would damage the DNA. Therefore, we speculate that the neuron-protective functions of HO-1 post the ICH may associated with the anti-inflammatory response. NF-κB is an important transcriptional factor, which could mediate the inflammatory response. The former studies [10, 11] illustrated that the HO-1 could inhibit the activation of the NF-κB.

In this study, we applied the ZPP-IX to inhibit the HO-1 expression, and observe the Nrf2 expres-
HO-1 regulates Nrf2-ARE signaling in ICH

Table 1. The primers of the genes

<table>
<thead>
<tr>
<th>Target gene</th>
<th>Forward primer (5' to 3')</th>
<th>Reverse primer (5' to 3')</th>
<th>Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nrf2</td>
<td>GAATAAAGTGGCGCCTCAGAA</td>
<td>AAGGTITCCCATCTCCTCAC</td>
<td>209</td>
</tr>
<tr>
<td>HO-1</td>
<td>CTATCGTGCTGCATGAAC</td>
<td>CAGCTCTCCAACAGCTCA</td>
<td>118</td>
</tr>
<tr>
<td>NF-κB</td>
<td>ACGAGTCGTGTTCCTCATCT</td>
<td>TGCTTCCTCCCCAGGAATA</td>
<td>150</td>
</tr>
<tr>
<td>TNF-α</td>
<td>GACCTCCACACTGAGATC</td>
<td>GAACCTGGGAGTAGATAAGG</td>
<td>197</td>
</tr>
<tr>
<td>GAPDH</td>
<td>ACTCCCATITCCTACCTTTT</td>
<td>TTACTCCTGAGGGCATGT</td>
<td>143</td>
</tr>
</tbody>
</table>

Materials and methods

Animals

Male SD rats were purchased from Slack Jiangda Laboratory Animal Co., Ltd. (Changsha, Hunan, China). The body weights range from 250 to 300 g.

Establishment of rat ICH model

The specific process and the establishing process were done due to the previous report [12]. The rats were subjected to fasting without water deprivation 8 h before surgery. At 3 mm lateral to the right side of the anterior fontanelle and a penetration depth of 5 mm, 50 μl autologous blood was slowly injected into the basal ganglia to establish a rat ICH model. The signa Excite HD 3.0 T MR scanner (GE, MI, USA) was used to examine the hematoma 3 h after the ICH had been established. When a notable round, oval or irregularly-shaped hematoma was discovered, the rat was considered as the model rat.

Trial grouping

We selected 100 healthy SPF SD rats (weighing 250-300 g). There were a total of 90 successfully established hemorrhage model rats for the experiment. All of the model rats were randomly divided into three groups, including ICH group, ZPP-IX (10 mg/kg) + ICH group, DMSO (10 mg/kg) + ICH group, respectively. For the above 3 groups, each group was divided into 5 subgroups, including 6 h, 12 h, 1 d, 2 d, 3 d and 7 d (after ICH) subgroups, and each subgroup contains 5 rats. Moreover, 5 health SPF rats were selected as the control group.
HO-1 regulates Nrf2-ARE signaling in ICH

triton for 15 min; ③ The slices were blocked using 10% BSA for 60 min; ④ The slices were incubated with primary antibody at 4°C overnight; ⑤ The slices were incubated with second antibody at room temperature for 2 hours in dark; ⑥ The slices were stained with DAPI for 15 min; ⑦ The sliced were mounted with glycerol, and observed with fluorescent microscope to take images. At 400 magnifications, images from 5 non-overlapping fields were analyzed for cell counts and the mean was calculated.

RT-PCR analysis

Fluorescent quantitative RT-PCR was performed to detect the transcription of Nrf2, HO-1, NF-κB and TNF-α. All primers were synthesized by Beijing Qing Ke New Industrial Biotechnology Co., Ltd. (Beijing, China), and the primer sequences are listed in Table 1. Trizol Reagent (Takara Co., Ltd., Japan) was used for total RNA extraction, and the RNA quality was tested at optical density (OD) 260/280. Then, 5.0 μg total RNA was used to synthesize the cDNA by using the third strand cDNA synthesis kit (Invitrogen, CA, USA). The cDNA was diluted to 150 ng/μl, and 2 μl cDNA (diluted) was used for polymerase chain reaction. The cycle threshold (Ct) was recorded. The results of the real-time quantitative PCR were automatically provided by the quantitative fluorescence analyzer, including the Ct values of the target genes and the reference gene, as well as ΔΔCT. Experiments on each group of samples were repeated three times. The GADPH protein was used as the internal control.

Statistical analysis

The statistical analysis was performed by using the SPSS 19.0 statistical software package (Microsoft, CA, USA). Significant differences between groups were determined by Student’s t test. The data were represented as the mean ± standard deviations. P values less then 0.05 was taken as statistically significant.

Results

Neurological score

The significant difference between the ICH group and normal group appeared from the first day (1 d), and achieved the peak value at second day (2 d) (Figure 1, P < 0.05). However, the neurological injury of the ICH group was also serious. The neurological scores in ZPP-IX

Figure 1. Neurological scores in every group at different time. *P < 0.05 represents the neurological scores in ICH group compared to the normal group. #P < 0.05 represents the neurological scores in ZPP-IX group compared to the ICH group.

Figure 2. HO-1 expression in ICH and ZPP-IX group. A. Western blot assay for the HO-1 expression. B. Statistical analysis for the HO-1 protein. *P < 0.05 represents the HO-1 level in ICH group compared to the normal group. #P < 0.05 represents the HO-1 level in ZPP-XI group compared to the ICH group.
HO-1 regulates Nrf2-ARE signaling in ICH

group were significantly higher compared to the ICH group from the 12 h to 7 d post operation (Figure 1, P < 0.05). There were no differences between the DMSO group and ICH group (Figure 1, P > 0.05). The neurological results suggest that ZPP-IX could inhibit the expression of HO-1, and aggravated the neurological dyafunstions, which may be caused by the activation of the inflammatory response in Nrf2-ARE signaling pathway.

ZPP-IX treatment decreases the HO-1 expression in ICH rats

In order to investigate the effects of the ZPP-IX treatment on the HO-1 expression, the HO-1 level was examined by using western blot assay. The results indicated that the HO-1 level in ICH group was significantly increased compared to the normal group (Figure 2, P < 0.05). The HO-1 level in ZPP-IX group was significantly decreased compared to the ICH group from 2 d post operation to 7 d post operation (Figure 2, P < 0.05), but also higher compared with the normal group.

ZPP-IX enhances the level of binding-Nrf2

There are two kinds of Nrf2 proteins, including total Nrf2 and binding Nrf2 protein. We also detected the total Nrf2 and binding Nrf2 protein by western blot. The results indicated that the total Nrf2 protein level was significantly decreased in ZPP-IX group compared to the ICH group (Figure 3A, 3B, P < 0.05). However, the binding-Nrf2 protein level was significantly increased in ZPP-IX group compared to the ICH group (Figure 3A, 3C, P < 0.05). Also, the ZPP-IX changes the Nrf2 and binding-Nrf2 proteins in ICH group compared to the normal group (Figure 3, P < 0.05).

ZPP-IX increases the inflammatory cytokines in ICH rats

In order to investigated the factors directly trigger the brain injury, the down-stream inflammatory cytokines of the Nrf2-ARE signaling pathway were detected. The results indicated that the NF-κB (Figure 4A) and TNF-α (Figure 4B) level were significantly increased in ZPP-IX group compared to the ICH group. Furthermore, the NF-κB and TNF-α level achieved the peak at the second day (2 d), and kept to the seventh day (7 d).

ZPP-IX affects mRNA expression of HO-1, Nrf2, NF-κB and TNF-α

The mRNA levels of HO-1, Nrf2, NF-κB and TNF-α were also examined by using the RT-PCR
HO-1 regulates Nrf2-ARE signaling in ICH

The results showed that the treatment of ZPP-XI significantly decreased the mRNA level of HO-1 (Figure 5A) and Nrf2 (Figure 5B) compared to the blank ICH rats \((P < 0.05) \). However, the ZPP-IX significantly increased the levels of NF-κB (Figure 5C) and

reaction. The results showed that the treatment of ZPP-XI significantly decreased the mRNA level of HO-1 (Figure 5A) and Nrf2 (Figure 5B) compared to the blank ICH rats \((P < 0.05) \). However, the ZPP-IX significantly increased the levels of NF-κB (Figure 5C) and

Figure 4. Inflammatory cytokines activation in ZPP-IX group by western blot assay detection. A. Western blot assay and statistical analysis for the NF-κB expression. B. Western blot assay and statistical analysis for the TNF-α expression. \(^* P < 0.05 \) represents the NF-κB or TNF-α level in ICH group compared to the normal group. \(^* P < 0.05 \) represents the NF-κB or TNF-α level in ZPP-XI group compared to the ICH group.

Figure 5. mRNA expression of HO-1, Nrf2, NF-κB and TNF-α in ICH and ZPP-IX group at different time. A. mRNA expression of HO-1 gene. B. mRNA expression of Nrf2 gene. C. mRNA expression of NF-κB gene. D. mRNA expression of TNF-α gene. \(^* P < 0.05 \) represents the protein levels in ICH group compared to the normal group. \(^* P < 0.05 \) represents the protein levels in ZPP-XI group compared to the ICH group.
TNF-α (Figure 5D) gene expression compared to the blank ICH rats \((P < 0.05) \). Furthermore, the effects of ZPP-IX on the inflammatory cytokines achieved to the maximization at 3 d, and could retain to the 7 d (Figure 5C, 5D).

Co-expression of Nrf2, HO-1, NF-κB, TNF-α and glia cells

To investigate the effects of HO-1, Nrf2, NF-κB, TNF-α on ICH perifocal tissues, co-expression of Nrf2, HO-1, NF-κB, TNF-α were examined by double immunofluorescence staining. The results showed that all of the HO-1, Nrf2, NF-κB, TNF-α could co-express with the CD11b positively in glia cells, and which reached the peak on day 32 (Figure 6). Thus, we selected the 2 d as the study time point to investigate the effects of ZPP-IX on the co-expression of the factors. The results indicated that there were more co-expression positive cells in ZPP-IX group compared to ICH group for the HO-1 and Nrf2 protein (Figure 6A). Furthermore, there were fewer co-expression positive cells in ZPP-IX group compared to ICH group for the NF-κB, TNF-α protein (Figure 6A). The statistical analysis results also showed that the ZPP-IX significantly inhibited the HO-1 and Nrf2 co-expressing with the CD11b compared to the ICH group (Figure 6B, \(P < 0.05 \)). The ZPP-IX also enhanced the NF-κB and TNF-α co-expressing with the CD11b compared to the ICH group (Figure 6B, \(P < 0.05 \)).

Discussion

As all is known, the Nrf2-ARE pathway is an important signaling pathway for the endoge-
HO-1 regulates Nrf2-ARE signaling in ICH

nously antioxidant stress and detoxication. When the Nrf2 was activated, it would be disso-
ciated from the complex with Keap1, and entered into the nucleus. The Nrf2 protein in
nucleus could regulate the antioxidant and detoxication related enzymes expression, which
process was mediated by the p38 MAPK [15]. Park et al. [16] found that the HO-1 expres-
sion was significantly decreased when the Nrf2 was silenced or using the MAPK inhibitor, while
significantly increased when using the Nrf2 activator. The previous studies [17, 18] indicated
that the activation of Nrf2 protein was associated with NF-κB inflammatory transcriptional
pathway. Shang et al. [19] also proved that the HO-1 protein is an important protein in the
downstream of the Nrf2 protein. The above studies suggest that the neuroprotection of
Nrf2 protein activation may associated with the HO-1 expression or regulation.

In the process of intracerebral hemorrhage, the up-regulation of HO-1 is the main marker for
the occurrence of oxygen stress, which also plays the important role of anti-oxidant. Especially
for the glia cells, the HO-1 may also strengthen the anti-oxidant stress and anti-
injury functions of neurons [20]. HO-1 may interfere the NF-κB nuclear localization signal
(NLS) directly [21]. HO-1 also inhibits the NF-κB activation by regulating the GSK-3β signaling
pathway [22]. Furthermore, the HO-1 protein could also inhibit the inflammatory cytokines,
such as TNF-α and IL-1β expression [23], which could induce the activation of NF-κB. Therefore,
the present study mainly discussed the effects of HO-1 expression on the NF-κB expression
and Nrf2 entering nucleus.

In the present study, the neuroprotection of HO-1 protein initiated from 12 hours to 7 days
after ICH. Actually, the HO-1 expression has been increased at the 6 hour after ICH, which
was consistent with the Nrf2 activation time. Our results suggest that the neuroprotection of
HO-1 was triggered at the early time of the ICH. Furthermore, the neuroprotection of HO-1 in
the early period may related with the Nrf2 and NF-κB entering nucleus.

The HO-1 inhibitor, ZPP-IX, was used to inhibit the HO-1 expression and observe the function
of HO-1 in the ICH indirectly. The results indicated that the ZPP-IX decreased the HO-1
expression, and inhibited the Nrf2 entering nucleus (double immunofluorescence staining
results), triggered the NF-κB entering nucleus (double immunofluorescence staining results),
and resulted in the over-expression of NF-κB and TNF-α. The RT-PCR reaction was also
proved the above results.

In conclusion, HO-1 protein regulates Nrf2-ARE pathway in ICH model by inhibiting Nrf2 enter-
ing nucleus and activating NF-κB and TNF-α expression.

Acknowledgements

This study was granted by the National Natural Science Fund of China (81260183).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xiao-Ping Yin, Department of Neurology, The Second Affiliated
Hospital of Nanchang University, 1 Minde Road, Nanchang Jiangxi 330006, China. Tel: +86-
13870218146; Fax: +86-13870218146; E-mail: yinxiaopnc@yeah.net

References

weighted MRI and proton MR spectroscopic imaging in the study of secondary neuronal in-
of GMRP1, a novel mediator of Akt pathway, in brain damage after intracerebral hemorrhage.
defroy O. Cognitive impairment and dementia after intracerebral hemorrhage: a cross-sec-
against atrazine-induced anti-oxidative re-
response. Int J Clin Exp Pathol 2014; 7: 2780-
2789.
HO-1 regulates Nrf2-ARE signaling in ICH

[8] Li N, Nel AE. Role of the nrf2-mediated signaling pathway as a negative regulator of inflammation: implications for the impact of particulate pollutants on asthma. Antioxid Redox Signal 2006; 8: 88-98.

