Original Article

Antibacterial activity and mechanism of berberine against *Streptococcus agalactiae*

Lianci Peng¹*, Shuai Kang¹*, Zhongqiong Yin¹*, Renyong Jia¹², Xu Song¹, Li Li¹, Zhengwen Li¹, Yuanfeng Zou¹, Xiaoxia Liang³, Lixia Li³, Changliang He³, Gang Ye³, Lizi Yin¹, Fei Shi¹, Cheng Lv¹, Bo Jing¹

¹College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China; ²Institute of Prevention Veterinary Medicine, Sichuan Agricultural University, Chengdu, China. *Equal contributors and co-first authors.

Received March 14, 2015; Accepted April 26, 2015; Epub May 1, 2015; Published May 15, 2015

Abstract: The antibacterial activity and mechanism of berberine against *Streptococcus agalactiae* were investigated in this study by analyzing the growth, morphology and protein of the *S. agalactiae* cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against *S. agalactiae* was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause *Streptococcus agalactiae* bacteria to die eventually.

Keywords: Berberine, *Streptococcus agalactiae*, antibacterial activity, SDS-PAGE, TEM

Introduction

Streptococcus agalactiae (S. agalactiae), known as group B Streptococcus (GBS), can infect terrestrial mammals [1, 2], S. agalactiae are also the predominant cause of invasive bacterial disease, which can cause septicaemia, meningitis, and pneumonia in neonates. Besides, it can lead to mortality or morbidity in non-pregnant adults, particularly in elderly persons and those with underlying diseases [3-5].

However, in recent years, the increased indiscriminate use of commercial antimicrobial drugs leads to the development of antibiotic resistance in pathogenic bacteria [6]. So it is in great need developing effective antibacterial agents with high efficacy and low toxicity to combat this problem [7-9]. Otherwise, the herbs have a strong antibacterial activity against pathogenic bacteria. It is reported that *Coptis* has a strong antibacterial activity in vitro against S. agalactiae [10].

Therefore, drugs that can either inhibit the growth of pathogenic bacteria or kill them without damaging host cells are considered as the first candidates. In recent years, berberine, as a broad-spectrum anti-microbial agent has attracted more and more interests [11, 12]. Berberine is an isoquinoline derivative alkaloid isolated from *Cortex phellodendri* and *Rhizoma coptidis* [13]. In Chinese pharmacopoeia, *Cortex phellodendri* and *Rhizoma coptidis* have the ‘heating-removing’ effect on their fever to reduce therapeutic application [14]. Berberine has anti-inflammatory [15, 16], antimicrobial [17, 18], and antiviral [19] effects. Berberine also has good antibacterial effect on S. agalactiae. Previous reports mainly focused on the effects of berberine on *Escherichia coli*, few studies tried to investigate antibacterial activity and mechanism of berberine on S. agalactiae, or to continue in-depth exploration.

To evaluate the antibacterial activity of berberine against S. agalactiae and elucidate its
mechanism, we studied the inhibitory effect of berberine on bacterial growth, membranous structure and synthesis of protein and DNA.

Materials and methods

Microbial strain and chemicals

S. agalactiae (CVCC 1886 strain, obtained from the Microbiological Lab of Sichuan Agricultural University, Ya’an, China) was cultivated on trypticase soy agar (TSA) which contained 0.5% calf serum (GIBCO). Inoculum were incubated for 24 h at 37°C in trypticase soy broth (TSB) which contained 0.5% calf serum, then diluting with TSB to approximately achieve the concentration of 1×10^8 CFU/mL. Berberine hydrochloride was obtained from China Control Institute of veterinary bio-products and pharmaceuticals, Beijing. The berberine was dissolved in 6.25% DMSO.

Antibacterial susceptibility test

Minimum inhibition concentration (MIC) value of *S. agalactiae* was determined by broth dilution method described in the National Committee for Clinical Laboratory Standards [20]. The berberine was added into TSB to achieve concentrations ranging from 5 mg/mL to 0.078 mg/mL. Then, the bacterial inocula were added into 10 mL tube containing 2 mL TSB (containing different concentrations of berberine) as the medium to approximately achieve an initial inoculum of 1×10^7 CFU/mL. Berberine hydrochloride was obtained from China Control Institute of veterinary bio-products and pharmaceuticals, Beijing. The berberine was dissolved in 6.25% DMSO.

SDS-PAGE assay

10^8 CFU/mL *S. agalactiae* grew on TSB medium containing MIC concentration of berberine. Control experiment was conducted in absence of berberine. After the cultures were incubated at 37°C with shaking at 150 rpm for 2 h, 4 h, 8 h and 12 h, the samples were centrifuged for 10 min at 6,000 g. The supernatant was discarded. Then 150 μL ddH2O and 50 μL DTT were added to the pellet. Samples were boiled for 10 min and then 10 μL of each sample was loaded on the gel. Electrophoresis was performed at 80 V through the stacking gel (5%), and at 120 V through the separation gel (12%).
Figure 2. TEM diagrams of *S. agalactiae* cells treated and untreated with berberine at 0.2 μm scale. A and B are untreated *S. agalactiae* cells. C and D are treated cells with berberine at concentrations 1× MIC for 4 h. E and F are treated cells with berberine at concentrations 1× MIC for 8 h.
Antibacterial activity of berberine

Detection of the effect of berberine on fluorescence intensity of S. agalactiae DNA

10^8 cfu/mL S. agalactiae were added to TSB containing MIC concentration of berberine. Control experiment was conducted in absence of berberine. The cultures were incubated at 37°C with shaking at 150 rpm for 12 h. After 1 μg/mL DAPI and 1 mL supernatant respectively were mixed in the dark for 1 h, a drop of the mixture was put on the glass slide and then directly observed under fluorescence microscope.

Results

Antibacterial activity of berberine

The MIC value of berberine against S. agalactiae was 0.78 μg/mL.

Time-kill curve of berberine against S. Agalactiae

Time-kill curves of berberine (Figure 1) showed that the growth curves of S. agalactiae without berberine included four phases: lag phase, exponential phase, stationary phase and death phase. Treated with 0.5× MIC of berberine, S. agalactiae had the integral growth cycle except for the decline phase in the first two hours. But treated with 1× MIC and 2× MIC of berberine, S. agalactiae directly experienced decline phase without adjustment phase, logarithmic phase and stable phase. All the bacterial cells of S. agalactiae were killed by berberine at 1× MIC within 8 h and 2× MIC within 4 h.

Action of berberine on the structures of S. agalactiae cells

It shows typical structure of normal S. agalactiae cells, which are shaped cells with intact cell walls, smooth membranes, a uniformly distributed cytoplasm and clear nuclear area in the middle of cells. Besides, cells stained evenly (Figure 2A, 2B).

The S. agalactiae cells treated with berberine at 1× MIC for 4 h and 8 h were very different from those untreated cells. After 4 h incubation with berberine, some cell walls and membranes were dissolved and the shape of cells became irregular; cells unequal division could be seen (Figure 2C, 2D). Besides, some cells stained slightly and nuclear areas were on the edge of cells (Figure 2C).

After treatment for 8 h, cells were seriously damaged (Figure 2E, 2F); there was loss of cell integrity and the cytoplasmic contents were leaking out of the cells; the shape of cells became more irregular (Figure 2E, 2F). Besides, some cells stained unevenly and nuclear areas were straggling in the cells (Figure 2E).

Protein analysis of S. agalactiae cells treated with berberines

SDS-PAGE profiles of proteins from treated and untreated S. agalactiae cells are shown in Figure 3. Lane1, 6 were the Marker and control. Lane 2-5 were protein patterns of S. agalactiae treated with berberine for 2 h, 4 h, 8 h and 12 h, respectively. The protein profiles of bacteria treated with berberine differed from those of the control. The protein profiles of bacteria treated with berberine for different times were also different. Protein bands observed for untreated S. agalactiae were more than the treated cells. There were less kinds and amount of bands between 66.4 KDa and 29 KDa than control. Protein bands of lane 2 were almost the same as lane 3. The change of protein bands (approximately 66.4 kDa) in lane 2-5 was apparent. The more time the bacteria were treated, the lower the intensities of the protein bands were observed.

Effect of berberine on fluorescence intensity of S. agalactiae DNA

It showed the fluorescence intensity of DNA of untreated and treated S. Agalactiae (from
Antibacterial activity of berberine

Discussion

In this study, the growth curves of \textit{S. agalactiae} exposure to berberine indicated that berberine could inhibit the growth and reproduction of \textit{S. agalactiae} (Figure 1). A minor concentration (39 \(\mu g/mL\)) of berberine could prolong the lag phase of \textit{S. agalactiae}. When the concentration of berberines was up to 78 \(\mu g/mL\), 10\(^6\) CFU/mL \textit{S. agalactiae} was completely inhibited within 8 h. When the concentration of berberine was 2MIC (156 \(\mu g/mL\)), all bacteria were completely inhibited in 4 h. It is suggested that high concentration of berberine could kill the bacteria more quickly. Other study has shown the berberine against \textit{E.coli} at 0.582 mg/mL and against \textit{Staphylococcus aureus} at 0.952 mg/mL would cause 50% decrease of the bacterial growth rate constant [23].

To understand the antibacterial mechanism, we observed the ultrastructure of \textit{S. agalactiae} through the TEM. The TEM results showed that micro-morphology of the treated \textit{S. agalactiae} has changed and the out membrane has diffused compared to the untreated cells. The out membrane plays an important role in maintaining the morphology and protecting the cell. Normal metabolism and growth of bacteria could be affected by broken cell membrane and wall [24, 25]. It is reported that some drugs, such as \textit{Heartleaf Houttuynia Herb}, \textit{Lonicera japonica Thunb} and so on, inhibit the growth of bacteria by damaging the structure of bacteria [26]. After treatment, cell membrane and walls were damaged seriously, this could lead to the increasing permeability of membrane and reduce some protein materials in cells. These results suggested that membrane of bacteria would be served as an important action site for drugs. But it is still a mystery where the damage takes place.

Additionally, the study showed that berberine had the effect on some proteins of \textit{S. agalactiae} measured by SDS-PAGE which is a powerful tool to dissociate proteins into individual chains and separate them according to their molecular weight [27, 28]. SDS-PAGE is therefore an ideal technique to use for demonstrating antimicrobial effectivity and has previously been used to study resistance mechanisms in bacteria [29]. Cloete and his co-workers [30] observed the disappearance of protein bands after exposure of \textit{Pseudomonas aeruginosa} to halide anolyte. Zinkevich and his co-workers [31] also found the disappearance of protein bands after exposing \textit{E. coli} to an anolyte solution with an ORP of 1000 mV. The SDS-PAGE results showed some protein bands of treated bacteria became low and even disappeared, suggesting that berberine could cause bacterial death by completely destroying proteins or partially degrading proteins.

Figure 4). The fluorescence intensity of treated \textit{S. agalactiae} DNA were weaker than untreated \textit{S. agalactiae} DNA.
Antibacterial activity of berberine

Moreover, berberine could also inhibit DNA synthesis. He and his co-workers [32] found that a new type of polysaccharide from Streptomyces can inhibit plasmid DNA synthesis of bacteria. The mechanism of many antibacterial and anti-tumor drugs has relationship with DNA topoisomerase [33, 34]. Our experiment results suggested that berberine might inhibit DNA synthesis by affecting the activity of DNA topoisomerase.

In conclusion, berberine had antibacterial activities against S. agalactiae by damaging the membrane and inhibiting synthesis of protein and DNA. Nevertheless, the further mechanism of interaction of berberine with S. agalactiae still need to be explored in future research.

Acknowledgements

This study was supported by the International cooperation projects of Sichuan Province (2014HH0058, 2013HH0042), the Sichuan Youth Science and Technology Innovation Research Team for waterfowl disease prevention and control (2013TD0015) and the National Natural Science Foundation of China (Grant No. 31372477).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Zhongqiong Yin, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China. Tel: +86 835 2885614; Fax: +86 835 2885614; E-mail: yinzhongq@163.com

References

Antibacterial activity of berberine

