Review Article
Association between HSD17B1 rs605059 polymorphisms and the risk of uterine diseases: a systemic review and meta-analysis

Xiyan Mu1,2, Xue Du1, Kui Yao1, Jitong Zhao1, Ce Bian1, Qiao Wang1, Hongwei Ma1, Tao Yi1, Yang Wu2, Xia Zhao1

1Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China; 2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, Sichuan, P. R. China

Received April 19, 2015; Accepted May 29, 2015; Epub June 1, 2015; Published June 15, 2015

Abstract: The aim of this study was to evaluate the HSD17B1 gene polymorphisms in the risks of endometrial cancer, endometriosis and uterine leiomyoma by meta-analysis. A comprehensive electronic search was conducted in PubMed, Medline (Ovid), Embase, Weipu, Wanfang and CNKI. The pooled ORs were performed using the RevMan 5.2 software. 8 case-control studies were included: 3 were about endometrial cancer, 4 were about endometriosis and 1 was about uterine leiomyoma. The result showed no significant association between HSD17B1 rs605059 gene polymorphisms and risks of endometrial cancer (AA vs. AG+GG: OR = 1.11, 95% CI = 0.94-1.32; AA+AG vs. GG: OR = 1.79, 95% CI = 0.42-7.52; AG vs. AA+ GG: OR = 0.87, 95% CI = 0.76-1.00; AA vs. GG: OR = 1.43, 95% CI = 0.62-3.30; A vs. G: OR = 1.00, 95% CI = 0.91-1.11) or endometriosis (AA vs. AG+GG: OR = 0.99, 95% CI = 0.75-1.32; AA+AG vs. GG: OR = 1.73, 95% CI = 0.92-3.25; AG vs. AA+ GG: OR = 1.24, 95% CI = 1.00-1.53; AA vs. GG: OR = 1.54, 95% CI = 0.79-2.97; A vs. G: OR = 1.23, 95% CI = 0.90-1.68). No association was found in a subgroup analysis based on Asian ethnicity for endometriosis. This meta-analysis suggested that HSD17B1 rs605059 polymorphisms were not associated with the risks of endometrial cancer and endometriosis. Further studies are needed to validate the conclusion and clarify the relationship between HSD17B1 rs605059 polymorphisms and the risk of uterine leiomyoma.

Keywords: Endometrial cancer, endometriosis, leiomyoma, HSD17B1, polymorphism, meta-analysis

Introduction
Estrogen has been reported to be one pivotal risk factor for the development of many uterine diseases like endometrial cancer, endometriosis and uterine leiomyoma [1-3]. This is validated by the fact that women of reproductive age and postmenopausal women under estrogen replacement therapy are the most susceptible group of people for the three types of diseases [4, 5]. Therefore, it is considered that discrepancies on the process of estrogen production and metabolism should play a role in the development of endometrial cancer, endometriosis and uterine leiomyoma.

The 17β-hydroxysteroid dehydrogenase (HSD17B) is important in the synthesis and metabolism of sex steroid hormones and 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1s) is the most common subtype [6, 7]. It is an enzyme catalyzing the conversion of estrone to the more biologically active estradiol in the final step of estrogen synthesis [8]. The encoding gene of HSD17B1 is located on chromosome 17q12-q21, and the protein is expressed in the ovaries, placenta, testis, endometrium, malignant and normal breast epithelium, and prostatic cancer cells [9-11]. Thus, it is assumed that estrogen-metabolizing gene HSD17B1 polymorphisms, which can potentially cause alterations in their biological function, should contribute to the susceptibility of individuals to hormone-related diseases. One type of HSD17B1 gene polymorphisms is rs605059. It is located in exon 6 (1954A/G) that leads to an
amino acid change from serine to glycine at position 312 [12, 13]. Several studies have been conducted to explore the relationship between HSD17B1 rs605059 gene polymorphisms and risks of endometrial cancer, endometriosis and uterine leiomyoma. However, the results were inconclusive due to different sizes of samples and participant characteristics. Thus, we performed a meta-analysis of currently relevant studies to investigate the relationships between HSD17B1 rs605059 gene polymorphisms and risks of endometrial cancer, endometriosis and uterine leiomyoma.

Materials and methods

Literature and search strategy

A comprehensive electronic search was conducted in PubMed, Medline (Ovid), Embase, Weipu, Wanfang and CNKI for studies published from January 1995 to April 2015. The following search query was used: “uterine”, “endometrial cancer”, “endometriosis”, “leiomyoma”, “polymorphism”, “HSD17B1”, “HSD17β1”, “17β-hydroxysteroid dehydrogenase”, “variant” and “mutation”. The search was updated every week until April 10, 2015.

Inclusion and exclusion criteria

Articles fulfilling the following criteria were included: (i) analyzed HSD17B1 rs605059 polymorphisms in uterine diseases (endometrial cancer, endometriosis, leiomyoma), (ii) provided sufficient data in both case and control groups to calculate the odds ratios (ORs) and the corresponding 95% CIs, (iii) case-control studies. When duplicate data were present in different articles, only the latest one would be considered. Meanwhile, articles that didn’t fulfill the criteria mentioned above were excluded.

Data extraction

Two investigators independently reviewed all potential studies. The following items were extracted: first author, year of publication, ethnicity, risk factors, diagnostic standard, features of control, target genotypes, genotyping methods, participant numbers, and genotype distributions in cases and controls. Any discrepancies were resolved by discussion with a third investigator until a consensus was reached.

Statistical analysis

Pooled ORs and corresponding 95% CIs were calculated to estimate the strength of the association between the HSD17B1 rs605059 polymorphisms and the risks of endometrial cancer, endometriosis and leiomyoma. SNPs were considered as binary variables. We estimated the risks of homozygous mutants (AA vs. AG+GG), heterozygous and homozygous mutants (AA+AG vs. GG) and heterozygous mutants (AG vs. AA+GG). We then compared the variant genotype AA with the wild type GG homozygote (AA vs. GG). We also assessed the risks of variant gene A alone (A vs. G). Heterogeneity assumptions were checked using the Higgins I^2 test. If heterogeneity did not exist ($I^2 < 50\%$), a fixed-effects model was applied otherwise a random-effects model was used. The Z test was performed to determine the significance of the pooled ORs where $P < 0.05$ was considered statistically significant. The presence of publication bias was evaluated by visually inspecting the asymmetry in funnel plots. All analyses were performed using the Revman 5.2 software (Cochrane Collaboration, Copenhagen).

Results

Search results

92 results returned after the initial search. In our further review, 77 studies were excluded for irrelevant to 17β-hydroxysteroid dehydrogenase polymorphisms and uterine disease risks based on titles and abstracts. Among the remaining 15 articles, 2 studies were excluded for addressing HSD17B2, HSD17B3 and HSD17B4 polymorphisms instead of HSD17B1 variants [14, 15]; 2 studies reported HSD17B1 polymorphisms like rs2006200, rs2071046 and rs597255 other than rs605059 [16, 17]; 3 studies were excluded for non-case-control studies [18-20]. Therefore, we enrolled 8 articles in this meta-analysis (Figure 1) [21-28].

Study characteristics

Among the 8 enrolled case-control studies, 3 were about endometrial cancer, 4 were about endometriosis and 1 was about uterine leiomyoma. 7 of the total 8 studies reported the numbers of HSD17B1 rs605059 gene variants AA, AG and GG in both case and control groups separately. One study only reported the num-
Association between HSD17B1 polymorphisms and the risk of uterine diseases

92 results identified from PubMed, Medline (Ovid), Embase, Weipu, Wanfang and CNKI after initial search

77 studies were excluded for irrelevant to 17β-hydroxysteroid dehydrogenase polymorphisms and uterine disease risks

15 studies for further review

2 study were excluded for addressing HSD17B2, HSD17B3 and HSD17B4

2 studies were excluded for irrelevant to rs605059 polymorphisms

3 studies were excluded for non-case-control studies: review or case report

8 studies about HSD17B1 rs605059 polymorphisms and uterine disease risks were included: 3 for endometrial cancer, 4 for endometriosis, 1 for leiomyoma

Figure 1. The flow chart of study selection.

Table 1. The characteristics and genotype distributions of included studies

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Ethnicity</th>
<th>Disease type</th>
<th>Case number</th>
<th>Control number</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashton</td>
<td>2010</td>
<td>Caucasian</td>
<td>Endometrial cancer</td>
<td>191</td>
<td>290</td>
<td>43</td>
<td>84</td>
</tr>
<tr>
<td>Dai</td>
<td>2006</td>
<td>Asian</td>
<td>Endometrial cancer</td>
<td>1031</td>
<td>1019</td>
<td>380</td>
<td>465</td>
</tr>
<tr>
<td>Setiawan</td>
<td>2003</td>
<td>N/A</td>
<td>Endometrial cancer</td>
<td>219</td>
<td>664</td>
<td>54</td>
<td>96</td>
</tr>
<tr>
<td>Wu</td>
<td>2012</td>
<td>Asian</td>
<td>Endometriosis</td>
<td>121</td>
<td>171</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Wang</td>
<td>2012</td>
<td>Asian</td>
<td>Endometriosis</td>
<td>300</td>
<td>337</td>
<td>81</td>
<td>166</td>
</tr>
<tr>
<td>Tsuchiya</td>
<td>2005</td>
<td>Asian</td>
<td>Endometriosis</td>
<td>75</td>
<td>57</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>Lamp</td>
<td>2011</td>
<td>N/A</td>
<td>Endometriosis</td>
<td>150</td>
<td>199</td>
<td>23</td>
<td>84</td>
</tr>
<tr>
<td>Cong</td>
<td>2012</td>
<td>Asian</td>
<td>Leiomyoma</td>
<td>121</td>
<td>217</td>
<td>15</td>
<td>66</td>
</tr>
</tbody>
</table>

Table 2. Comparison of possible risk factors between cases and controls

<table>
<thead>
<tr>
<th>First author</th>
<th>Age</th>
<th>BMI</th>
<th>Diabetes</th>
<th>Hypertension</th>
<th>Hormone therapy</th>
<th>Personal or relative history of cancer</th>
<th>Smoking</th>
<th>Alcohol</th>
<th>Menopausal statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashton</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dai</td>
<td>NO</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
</tr>
<tr>
<td>Setiawan</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Wu</td>
<td>NO</td>
<td>NO</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
</tr>
<tr>
<td>Wang</td>
<td>YES</td>
<td>NO</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tsuchiya</td>
<td>NO</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
</tr>
<tr>
<td>Lamp</td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>NA</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Cong</td>
<td>NO</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>NO</td>
<td>N/A</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

NO: no difference presented between cases and controls; YES: significant difference presented between cases and controls.
Association between HSD17B1 polymorphisms and the risk of uterine diseases

Table 3. Summary of different comparative results

<table>
<thead>
<tr>
<th>Disease type</th>
<th>Genotypes</th>
<th>Overall&subgroup</th>
<th>Participants</th>
<th>OR (95% CI)</th>
<th>Z value</th>
<th>P value</th>
<th>I² (%)</th>
<th>Effect Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endometrial cancer</td>
<td>AA vs. AG+GG</td>
<td>Overall</td>
<td>3,414</td>
<td>1.11 (0.94, 1.32)</td>
<td>1.25</td>
<td>0.21</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td>AA+AG vs. GG</td>
<td>Overall</td>
<td>3,414</td>
<td>1.79 (0.42, 7.52)</td>
<td>0.79</td>
<td>0.43</td>
<td>98</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td>AG vs. AA+GG</td>
<td>Overall</td>
<td>3,414</td>
<td>0.87 (0.76, 1.00)</td>
<td>1.97</td>
<td>0.05</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td>AA vs. GG</td>
<td>Overall</td>
<td>1,819</td>
<td>1.43 (0.62, 3.30)</td>
<td>0.85</td>
<td>0.40</td>
<td>93</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td>A vs. G</td>
<td>Overall</td>
<td>6,828</td>
<td>1.00 (0.91, 1.11)</td>
<td>0.06</td>
<td>0.96</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>AA vs. AG+GG</td>
<td>Overall</td>
<td>1,118</td>
<td>0.99 (0.75, 1.32)</td>
<td>0.04</td>
<td>0.97</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asian</td>
<td>769</td>
<td>0.92 (0.65, 1.32)</td>
<td>0.44</td>
<td>0.66</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td>AA+AG vs. GG</td>
<td>Overall</td>
<td>1,118</td>
<td>1.73 (0.92, 3.25)</td>
<td>1.71</td>
<td>0.09</td>
<td>75</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asian</td>
<td>769</td>
<td>1.66 (0.60, 4.62)</td>
<td>0.97</td>
<td>0.33</td>
<td>82</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td>AG vs. AA+GG</td>
<td>Overall</td>
<td>1,410</td>
<td>1.24 (1.00, 1.53)</td>
<td>1.97</td>
<td>0.05</td>
<td>10</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asian</td>
<td>1,061</td>
<td>1.17 (0.92, 1.49)</td>
<td>1.29</td>
<td>0.20</td>
<td>24</td>
<td>Fixed</td>
</tr>
<tr>
<td></td>
<td>AA vs. GG</td>
<td>Overall</td>
<td>539</td>
<td>1.54 (0.79, 2.97)</td>
<td>1.28</td>
<td>0.20</td>
<td>67</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asian</td>
<td>367</td>
<td>1.42 (0.50, 4.05)</td>
<td>0.67</td>
<td>0.51</td>
<td>75</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td>A vs. G</td>
<td>Overall</td>
<td>2,236</td>
<td>1.23 (0.90, 1.68)</td>
<td>1.31</td>
<td>0.19</td>
<td>64</td>
<td>Random</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asian</td>
<td>1,538</td>
<td>1.22 (0.71, 2.09)</td>
<td>0.73</td>
<td>0.47</td>
<td>76</td>
<td>Random</td>
</tr>
</tbody>
</table>

numbers of heterozygous mutants AG and we failed to get any response from the corresponding authors to retrieve the numbers of homozygous mutants [24]. 6 of the total 8 studies demonstrated the patients’ ethnicity as Caucasian or Asian while the other 2 failed to mention any information about the races (Table 1). Possible variables among participants that might affect the odds ratios were also discussed including age, body mass index, history of diabetes and hypertension, hormone therapy history, family history of cancers, smoking, alcohol consumption and menopausal status (Table 2).

Quantitative data analysis

Table 3 showed the pooled odds ratio of HSD17B1 rs605059 polymorphisms in the risk of endometrial cancer and endometriosis. 3,414 participants were analyzed for the HSD17B1 rs605059 polymorphisms and the risk of endometrial cancer. We found no significant association using 5 different genotype or allele comparisons: AA vs. AG+GG, AA+AG vs. GG, AG vs. AA+GG, AA vs. GG and A vs. G (AA vs. AG+GG: OR = 1.11, 95% CI = 0.94-1.32; AA+AG vs. GG: OR = 1.79, 95% CI = 0.42-7.52; AG vs. AA+GG: OR = 0.87, 95% CI = 0.76-1.00; AA vs. GG: OR = 1.43, 95% CI = 0.62-3.30; A vs. G: OR = 1.00, 95% CI = 0.91-1.11). Fixed-effects model or random-effects model was chosen according to Higgins I² test. When heterogeneity did not exist (I² < 50%), a fixed-effects model was applied otherwise a random-effects model was used. Z values and P values were also calculated to assess the pooled ORs.

As for HSD17B1 rs605059 polymorphisms and the risk of endometriosis, 1,410 participants including 646 cases and 764 controls were analyzed. The meta-analysis of the overall population failed to show any significant association between HSD17B1 rs605059 polymorphisms and the risk of endometriosis (AA vs. AG+GG: OR = 0.99, 95% CI = 0.75-1.32; AA+AG vs. GG: OR = 1.73, 95% CI = 0.92-3.25; AG vs. AA+GG: OR = 1.24, 95% CI = 1.00-1.53; AA vs. GG: OR = 1.54, 95% CI = 0.79-2.97; A vs. G: OR = 1.23, 95% CI = 0.90-1.68). A subgroup analysis based on race stratification was also performed. For Asian people, mainly Taiwanese and Japanese, no significantly increased or decreased risks of endometriosis were found for HSD17B1 rs605059 polymorphisms (AA vs. AG+GG: OR = 0.92, 95% CI = 0.65-1.32; AA+AG vs. GG: OR = 1.66, 95% CI = 0.60-4.62; AG vs. AA+GG: OR = 1.17, 95% CI = 0.92-1.49; AA vs. GG: OR = 1.42, 95% CI = 0.50-4.05; A vs. G: OR = 1.22, 95% CI = 0.71-2.09).

Only one case-control study on HSD17B1 rs605059 polymorphisms and the risk of uterine leiomyoma was available [28]. Even though the frequencies of rs605059 AA genotype and A allele were significantly increased in patients with uterine leiomyoma compared to healthy controls (GG vs. AA, OR 0.40, 95 % CI 0.20-0.82; G vs. A, OR 0.68, 95 % CI 0.50-0.94), we
Association between HSD17B1 polymorphisms and the risk of uterine diseases

could still not conclude that the genotype of HSD17B1 rs605059 played a role in the leiomyoma tumorigenesis.

Publication bias

The shapes of the funnel plots appeared to be symmetrical in all comparison genetic models, suggesting the lack of publication bias for the comparisons and indicating the reliability of this meta-analysis.

Discussion

Estrogen has been reported to be one pivotal risk factor for the development of many uterine diseases like endometrial cancer, endometriosis and uterine leiomyoma. In recent years, polymorphisms of genes encoding key proteins in the pathway of estrogen synthesis and metabolism have been explored to identify possible genetic risk factors for uterine diseases [29, 30]. One importantly involved protein is the 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1), an enzyme catalyzing the conversion of estrone to the more biologically active estradiol in the final step of estrogen synthesis. Polymorphisms of HSD17B1 gene rs605059 have been investigated in some previous studies to explore their association with the risks of endometrial cancer, endometriosis and uterine leiomyoma. However, the results have been inconsistent, possibly due to limited sample sizes and variant participant characteristics. In order to address the inconsistencies of previously published studies, and to draw a more concrete conclusion, the current meta-analysis was performed.

In the present meta-analysis, 8 case-control studies were enrolled. 3 were about endometrial cancer, 4 were about endometriosis and 1 was about uterine leiomyoma. As for endometrial cancer, 3,414 participants including 1,441 cases and 1,973 controls were analyzed. No association was found between the HSD17B1 rs605059 polymorphisms and the risk of endometrial cancer using 5 different genotype or allele comparisons. Among the 4 case-control studies of endometriosis, one study reported that A allele of HSD17B1 conferred higher risk for endometriosis and another study reported that HSD17B1 SNP A allele increased overall endometriosis risk, especially for stage I-II diseases [26, 27]. In contrast, the other two studies failed to reveal any significant relationship between HSD17B1 rs605059 polymorphisms and the risk of endometriosis [24, 25]. By performing a meta-analysis, we concluded that the HSD17B1 rs605059 polymorphisms and the risk of endometriosis were not significantly associated. The pooled results of a subgroup analysis on Asian people were consistent with the overall meta-analysis. Since there was only one case-control study available to explore the HSD17B1 rs605059 polymorphisms and the risk of uterine leiomyoma, we could hardly make any concrete conclusion even though it revealed that the frequencies of rs605059 AA genotype and A allele were significantly increased in patients with uterine leiomyoma compared to healthy controls.

Despite our efforts to pool the results of currently published case-control studies, some disadvantages of the present meta-analysis should not be ignored. Firstly, the number of available studies was very limited. 3 studies were found for endometrial cancer, 4 were for endometriosis and only 1 for uterine leiomyoma. It is possible that the results of unpublished studies or further investigations might be differed from the present conclusion, thus cautions should be paid to explain the results [31]. Secondly, this meta-analysis was based on unadjusted estimations. It is known that other risk factors like age and menopausal status were also important in the development of uterine diseases [32-35]. These confounding factors might affect the validity of the results. Thirdly, available studies regarding these associations in Asian ethnicities were not sufficient. The subgroup analysis included mainly Japanese and Taiwanese Chinese people. Even though evidence for relationship between the HSD17B1 rs605059 polymorphisms and endometriosis was found in Japanese population, the overall analysis showed no significant association. Thus, studies enrolling more Asians were required.

To our knowledge, the present study was the first meta-analysis exploring the association between HSD17B1 rs605059 polymorphisms and the risks of uterine diseases. Despite all the disadvantages mentioned above, we could still conclude that HSD17B1 rs605059 polymorphisms were not associated with the risks of endometrial cancer and endometriosis. Further studies are needed to validate the con-
Association between HSD17B1 polymorphisms and the risk of uterine diseases

cclusion and clarify the association between HSD17B1 rs605059 polymorphisms and the risk of uterine leiomyoma.

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No. 2014AA020708) and China Postdoctoral Science Foundation (No. 2012-0181110029).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xia Zhao, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China. Tel: +86 28 85502822; Fax: +86 28 85502822; E-mail: drzhaoxia@163.com; xia-zhao@126.com

References

[19] Olson SH, Bandera EV, Orlow I. Variants in estrogen biosynthesis genes, sex steroid hor-

