Original Article

Motor cortex-periaqueductal gray-rostral ventromedial medulla neuronal circuitry may involve in modulation of nociception by melanocortinergic-opioidergic signaling

Ming Chen¹, Zhi-Gang He², San-Guang Liu³, Hong-Bing Xiang²

¹Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, P. R. China; ²Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China; ³Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, P. R. China

Received October 14, 2015; Accepted June 11, 2016; Epub August 1, 2016; Published August 15, 2016

Abstract: Previous studies documented that stimulation of the motor cortex and periaqueductal gray (PAG) was effective management for refractory neuropathic pain, however, our understanding about the neuroanatomical and neurochemical mechanisms of motor cortex and PAG stimulation is still limited. We used a modified retrograde multisynaptic pseudorabies virus tracer PRV-614 injection to the kidney with an attempt to provide morphological evidence of the neuroanatomical circuit among motor cortex, PAG, rostral ventromedial medulla (RVM), and kidney. The principal findings of this study are: (1) Spinal nerve injury induced an increase of c-Fos/MC4R-GFP dual labeled neurons in motor cortex. (2) The inoculation of PRV-614 into the kidney resulted in retrograde infection of neurons in RVM, PAG and motor cortex, and PRV-614/MC4R-GFP dual labeled neurons were detected in RVM, PAG and motor cortex. (3) MC4R-GFP/MOR dual labeled neurons were detected in PAG, and 50%-70% of the GFP-positive neurons in the ventrolateral PAG were MOR-immunoreactive. These results together demonstrate that MC4R signaling in motor cortex-PAG-RVM neural circuit may participate in the descending modulation of nociceptive transmission. The data provided by this study suggest that melanocortinergic-sympathetic signaling of motor cortex-PAG-RVM neural circuit may be a potential target for the inhibition of nociceptive transmission.

Keywords: Motor cortex, periaqueductal gray, rostral ventromedial medulla, neural circuit, modulation of nociception, melanocortinergic signaling, opioidergic signaling

Introduction

Previous studies in animal and human documented that increasing motor cortex and periaqueductal gray (PAG) by means of electrical brain stimulation or neural mobilization technique was effective management for refractory neuropathic pain [1-6]. There is a strong rationale for exploring the mechanisms of brain stimulation or neural mobilization technique as a therapeutic candidate for neurological pain [6, 7]. It is noteworthy that PAG-rostral ventromedial medulla (RVM) pathway forms part of a descending nociceptive network that modulates nociceptive neurotransmission both at the supraspinal level and the spinal cord dorsal horn [8-10]. Though there exist obvious changes within brain after motor cortex and PAG stimulation, including blood flow increase appeared in motor areas [11, 12] and the secretion of endogenous opioids [3, 6, 13], our understanding about the neuroanatomical and neurochemical mechanisms of motor cortex and PAG stimulation is still limited [14, 15].

Studies have shown that the melanocortin-4 receptor (MC4R) has been identified as significant analgesic targets and plays an important role in nociceptive behavior induced by nerve injury [16-18], but the anatomical mechanism of this action remains unclear. It has been extensively reported that opioids through interactions with receptors distributed in several regions, and activation of mu-opioid receptor (MOR) is also responsible for efficacious pain relief [6, 19, 20]. Evidences have showed that retrograde multisynaptic tracing technique of
Pseudorabies virus (PRV) is used to characterize neuroanatomical circuits in the CNS [21-30]. The goal of the present study was to define whether stimulation originated from SNL induces the increase of c-Fos expression in the motor cortex, and elucidate whether motor cortex-PAG-RVM neuronal circuitry involves in opioidergic-melanocortinergic signaling. We used transgenic recombinants of a PRV-Bartha derivative, PRV-614, to express a novel monomeric red fluorescent protein (mRFP1) [30-33] for direct visualization under fluorescence microscope, with an attempt to provide morphological evidence of the neuroanatomical circuit among motor cortex, PAG, RVM, and kidney. Immunohistochemical detection of the MOR was also incorporated into the experiments, so that we could provide direct neuroanatomical evidence for the central opioidergic-melanocortinergic signaling in the PAG.

Materials and methods

Animals

All experiments were performed in accordance with the guidelines of the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, the European Communities Council Directive of 24 November 1986 (86/609/EEC). This study was reviewed and approved in advance by the local Animal Care and Use Committee. Experiments were carried out on male transgenic mice, 4-8 weeks old (20-25 g), expressing GFP in a subset of MC4R-containing neurons, which were first obtained from Dr. Joel Elmquist and then bred to generate male and female mice. Mice were genotyped as described by Rossi et al [34]. Mice were kept under controlled conditions (24±0.5°C, 12 h alternating light-dark cycle, food and water ad libitum).

c-Fos expression in motor cortex following spinal nerve ligation injury

The MC4R-GFP transgenic mice were randomly divided into two groups: SNL group (subjected to left spinal nerve ligation injury, n=6) and control group (subjected to the same operation, but the spinal nerves were not ligated, n=6). Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, SNL injury was performed as previously described [35, 36]. Briefly, after a midline incision above the lumbar spine, deep dissection of the paraspinal muscles and exposure of the dorsal vertebral column from L4 to S1, the left L5 and L6 spinal nerves were isolated and tightly ligated with a 4-0 silk suture distal to the DRG and proximal to the formation of the sciatic nerve. The incision was closed. 7 d after the surgery, mice were deeply anesthetized and perfused. Brains were post-fixed in 4% paraformaldehyde-borate. Coronal sections through the brain (25 µm) were collected into four series; tissue was either reacted immediately or stored in cryoprotectant at 4°C. Sections including motor cortex were processed to detect c-Fos by fluorescence immunohistochemical (IHC) in order to determine the relationship between neurons expressing MC4R-GFP and c-Fos. For MC4R-GFP and c-Fos IHC, the primary antibodies were mouse anti-GFP (AM1009a-ev; Abgent; 1:500) and rabbit polyclonal c-Fos antibody (sc-52, Santa Cruz, 1:200), and the corresponding secondary antibody included FITC-conjugated Goat-anti-Mouse IgG (H+L) (Jackson ImmunoResearch, 1:1000) and Cy3-conjugated Goat-anti-Rabbit IgG(H+L) (Jackson ImmunoResearch, 1:1000), respectively. Finally, sections were collected onto glass slides, covered with a coverslip, and examined under microscope by an investigator blinded as to treatment.

Injections of PRV-614 and immunohistochemistry for MC4R

Microinjection of retrograde tracer PRV-614 into the left kidney of the male transgenic MC4R-GFP mice (n=15) was performed in a manner similar to that described in previous reports [26-31, 37, 38, 52, 53]. The animals were anesthetized with isoflurane (3% induction, 2% maintenance), and the left kidney was exposed by ventral laparotomy. Under surgical microscope, 1 µl injections of PRV-614 (2×10^8 pfu/mL) was inserted into the left upper site of the exposed left kidney (0.2 µl per injection at 5 injection sites per one mouse) using a 30-gauge needle connected to a Hamilton syringe (10 µl). After PRV-614 injection, mice were allowed to survive for several days (3 days, n=5; 4 days, n=5; and 5 days, n=5) before being killed.

After a survival time of 3-5 days, the animals were humanly killed under deep anesthesia. The procedures of tissue treatment were similar to those described above. Sections including motor cortex, PAG and RVM were processed for rabbit anti-GFP (1:1,000; Molecular Probes, Eugene, OR) fluorescence immunohistochemis-
try according to standard protocols [37, 39]. PRV-614-infected neurons were directly visualized under fluorescence microscope by a band pass filter for Cy3 [28, 30, 40-42].

Figure 1. The co-localization of MC4R-GFP and c-Fos in the motor cortex of mice as detected by immunofluorescence. SNL group: B1-4; Control group: C1-4. A. The red box in the left upper drawing indicates the approximate location from which the images of motor cortex were digitized. B1, C1. MC4R-GFP was distributed in the motor cortex. B2, C2. c-Fos was distributed in the motor cortex with punctiform structures. B, B4. The yellow pots in the merged pictures (yellow arrowheads) show the co-localization of MC4R-GFP and c-Fos. B3, C3. The nuclei were stained with DAPI. Scale bar, 50 µm.

Figure 2. PRV-614/MC4R-GFP double-labeled neurons in the rostral ventromedial medulla (NRM and NGCα). Images A-C were taken from an animal after injections of PRV-614. A showed MC4R-GFP positive neurons in the rostral ventromedial medulla; B showed neurons infected with PRV-614, which send transsynaptic projections to the kidney; C showed overlaid images of A plus B. Images A1-C1 amplified views of A-C, respectively. Arrows indicate double-labeled neurons. NRM, nucleus raphe magnus; NGCα, nucleus gigantocellularis pars alpha, RVM, rostral ventromedial medulla. Scale bars, 50 µm.
Immunofluorescence staining for MC4R and MOR

The transgenic MC4R-GFP mice (n=5) were transcardially perfused under anesthesia. The brain was postfixed and transferred to 30% sucrose. Double immunofluorescence staining was performed as described above with minor additions. Briefly, sections including PAG were incubated with a mixture of goat polyclonal MOR-1 (c-20) antibody (1:200, Santa Cruz, sc-7488) and rabbit anti-GFP (1:1000, Life technologies, A6455) diluted in PBS containing 0.1% Triton X-100 and 10% donkey serum overnight at 4°C. Subsequently, sections were incubated with a mixture of FITC-conjugated mouse-anti-Goat IgG (H+L) (1:1000, Jackson ImmunoResearch), Biotin-sp-conjugated affiniPure donkey anti-Rabbit IgG (1:2000, Jackson ImmunoResearch) and Cy3-conjugated streptavidin (Jackson ImmunoResearch).

Tissue analysis

Immunofluorescence photomicroscope was visualized by an investigator blinded as to treatment, using a Two-Photon fluorescence microscopy or Olympus IX81 photomicroscope equipped with epifluorescence with a filter set for visualization of Alexafluor 488 (excitation range, 425-525 nm; emission range, 500-600 nm), Cy3 (excitation range, 500-560 nm; emission range, 560-650 nm) and Alexafluor 350 (excitation range, 300-400 nm; emission range, 440-490 nm). PRV-614-, MC4R-GFP-, DAPI-positive cells are identified with red, green, blue fluorescence, respectively. The nuclei were stained with DAPI. The regions in which positive cells were located were defined with reference to the atlases of Franklin KB and Paxinos G [43].

Results

Co-localization of MC4R-GFP and c-Fos-positive cells in the motor cortex

c-Fos expression in the motor cortex was clearly different for SNL group compared with Control group. As evident in the photomicrographs of Figure 1, pain stimulation with SNL group (Figure 1) elicited more c-Fos-positive cells medially compared with stimulation with Control group (Figure 1). The c-Fos-positive cells labeled in the transgenic mice were densely distributed in the dorsal region of the motor cortex but were sparse ventrally. The pattern of MC4R-GFP in the motor cortex was very striking. As illustrated in Figure 1, it was clear from visual inspection that relatively 50% c-Fos-positive cells in the motor cortex were MC4R-GFP positive, and the potential for double labeling was much more likely in the dorsal motor cortex (Figure 1).
After injection of the fluorescent microspheres PRV-614 into the left kidney, many neurons in the motor cortex, PAG and RVM regions were observed to contain retrograde tracer. These regions were examined for the presence of single- and double-labeled cells. Initial analysis focused on qualitative characterization of areas that contained double-labeled neurons, which were co-expressed with PRV-614 and MC4R-GFP. PRV-614-infected neurons were retrogradely and bilaterally labeled in the motor cortex, PAG and RVM in late survival group, with approximately equal numbers of infected neurons on the ipsilateral and contralateral sides.

Specific expression of PRV-614 in the RVM, PAG and motor cortex

At 3-4 d survival time (n=5), PRV-614 labeled neurons were located in the nucleus raphe magnus (NRM), the ipsilateral and contralateral nucleus gigantocellularis pars alpha (NGCα) (4 d survival time, Figure 2). In contrast to the RVM (NRM and NGCα), we didn’t detect PRV-614 labeled neurons in the motor cortex, suggesting that PRV-614-infected neurons were retrogradely labeled in the mice.

At 4-5 d survival time, PRV-614 positive neurons were observed in the ipsilateral and contralateral PAG. From 4 d to 5 d, the most substantial increase seen in the number of PRV-614-infected cells was in the ipsilateral and contralateral PAG (5 d survival time, Figure 3). Additionally, three of the animals surviving 5 d began to show PRV-614 labeling in the motor cortex.

At 5-6 d survival time (n=5), PRV-614 labeling in the ipsilateral and contralateral motor cortex (6 d survival time, Figure 4) was significantly increased in all animals.

MC4R and PRV-614 co-expression in the RVM, PAG and motor cortex

We assayed GFP expression in the MC4R-GFP reporter mouse by immunofluorescence staining, and found a large number of MC4R-GFP-ir cells in the RVM (NRM and NGCα), PAG and motor cortex. We observed that double-labeled MC4R-GFP/PRV-614 cells were present in the RVM (4 d survival time, Figure 2), PAG (5 d survival time, Figure 3) and motor cortex (6 d survival time, Figure 4).

Co-localization of MC4R-GFP and MOR-positive cells in the PAG

It is well known that the PAG anatomically comprises a number of columns. By immunofluorescence staining, we found that MC4R-GFP and MOR-positive cells were mainly located in the column of the ventrolateral PAG (Figure 5). Double-labeled MC4R-GFP/MOR neurons were densely co-localized in the ventrolateral region.
of the PAG but sparsely distributed in the dor-
sal PAG, and 50%-70% of the GFP-positive
neurons in the ventrolateral PAG were MOR-
immunoreactive (Figure 5).

Discussion

The principal findings of this study are: (1)
Spinal nerve injury induced the increase of
c-Fos/MC4R-GFP dual labeled neurons in
motor cortex. (2) The inoculation of PRV-614
into the kidney resulted in retrograde infect-
ion of neurons in RVM, PAG and motor cortex,
and PRV-614/MC4R-GFP dual labeled neu-
rons were detected in RVM, PAG and motor cor-
tex. (3) MC4R-GFP/MOR dual labeled neurons
were detected in PAG, and 50%-70% of the
GFP-positive neurons in the ventrolateral PAG
were MOR-immunoreactive. These results to-
gether suggest that MC4R signaling in motor
cortex-PAG-RVM neuronal circuitry may partici-
pat in the descending modulation of nociceptive
transmission. This study suggests that melano-
cortinergic-sympathetic signaling of motor cor-
tex-PAG-RVM neural circuit may be a potential
target for between the inhibition of nociceptive
transmission and the prevention and reversion
of neuropathic pain.

The immediate early gene c-fos is rapidly and
transiently expressed in excited neurons in
response to noxious stimulation [44-46]. In the
present study, one of the most interesting
results that algesic stimulation originated from
SNL induced an express pattern of c-Fos in the
motor cortex. In particular, there was a dense
concentration of c-Fos in the dorsal region of
the motor cortex following stimulation with
SNL, suggesting that these c-Fos-positive neu-
rons may involve in the circuit for processing

Figure 5. MOR/MC4R-GFP double-labeled neurons in the periaqueductal gray. A1 showed MOR positive neurons; B1 showed MC4R-GFP positive neurons in the periaqueductal gray; C1 showed overlaid images of A1 plus B1. Images A2-C2 amplified views of A1-C1, respectively. Images A3-C3 amplified views of A2-C2, respectively. aq, aqueduct; PAG, periaqueductal gray. Arrows indicate double-labeled neurons. Scale bars, 50 µm for A1-C1, 100 µm for A2-C2, 200 µm for A3-C3.
noxious stimuli that lead to this painful response. The presence of MC4R in motor cortex reported by Liu and others fits with the functional organization of the autonomic homeostasis system [47]. We confirmed that spinal nerve injury induced the increase of c-Fos/MC4R-GFP dual labeled neurons in motor cortex, indicating that these dual labeled neurons in motor cortex may be part of the circuit for the modulation of nociception by melanocortinergic signaling.

The finding presented here indicated that the neurotropic viruses PRV-614 were able to replicate in the neuronal cell body and were then retrogradely transported to adjacent neurons via functionally active synapses. Our results showed that injections of PRV-614 into the kidney resulted in retrograde infection of neurons in the RVM, PAG, and motor cortex that was very similar to that observed in the rat [48, 49]. This transsynaptic retrograde tracing method can be used to show the CNS neuronal circuit innervating the site of PRV-614 injection. Because there is no evidence that the motor and parasympathetic pathway provides any innervations to kidney, motor cortex, PAG, and RVM were infected with PRV-614 only via the sympathetic pathway. So, this study provided direct mapping of motor cortex, PAG, and RVM neurons innervating the kidney, suggesting that motor cortex-PAG-RVM neuronal circuitry appears to play a substantial role in regulating sympathetic outflow to kidney.

Several observations suggest that the MC4R is an essential mediator for nociceptive behavior induced by nerve injury [50-54]. Pharmacological studies have shown that MC4R play a pivotal role in the regulation of sympathetic signal [55, 56]. Chu et al intrathecally treated with MC-4R antagonist HS014 or p38-MAPK inhibitor SB203580 in rats given chronic constriction injury (CCI), and reported that both HS014 and SB203580 reduced CCI-induced hyperalgesia, suggesting that MC4R mediates the mechanisms of neuropathic pain by p38MAPK signaling [18]. We discovered that PRV-614/MC4R-GFP dual labeled neurons were detected in the RVM, PAG and motor cortex. Thus, motor cortex-PAG-RVM neuronal circuitry involved in modulation of melanocortinergic-sympathetic signaling.

Accumulating reports highlight the opioidergic nature of the PAG. The μ-opioid receptor (MOR) has been characterized as the main mediator of opioid signaling in neuronal cells. Furthermore, the importance of the PAG in the opioid inhibitory system is well characterized in studies with the administration of mu-opioid agonist DAMGO, indicating that PAG is a region with high levels of MOR express and one of the most important areas for opioid-mediated anti-nociception [6, 36-38, 48-53, 57-59]. Pharmacological evidence supports the involvement of MOR-expressing cells in the PAG circuitry [60]. Fonoff et al reported that motor cortex stimulation induced the increase in nociceptive threshold, which is abolished by opioid receptors blockade [13]. Our results showed that double-labeled MC4R-GFP/MOR neurons were mainly co-localized in the ventrolateral PAG, and 50%-70% of the GFP-positive neurons in the ventrolateral PAG were MOR-immunoreactive, indicating that these dual labeled neurons in PAG may be involved in the modulation of nociception by melanocortinergic-opioidergic signaling.
The motor cortex emerges as an important structure involved in the processing of nociceptive response. In the last years, experimental evidence was in line with this idea, showing that antinociceptive effect elicited by motor cortex stimulation may be mediated via the activation of descendent inhibitory pain pathway [13, 61]. In previous studies, we demonstrated that motor cortex-PAG circuitry involved in modulation of nociceptive behavior by melanocortinergic-sympathetic signaling [15]. The study from Pagano et al showed that neurocircuitry during the antinociception induced by motor cortex stimulation involved an inhibition of GABAergic interneurons of the PAG which activated special neurons responsible for the descending pain inhibitory control system [7]. Furthermore, Franca et al demonstrated that motor cortex stimulation increased the nociceptive threshold in rats by disinhibiting the neurons in PAG [62]. Together, these studies suggest that motor cortex has strong anatomical connections to the PAG, suggesting that there exists motor cortex-PAG neurocircuitry participated in the regulation of nociceptive behavior (Figure 6).

It is known that PAG-RVM circuit played an important role in modulation of nociception [63]. Farkas et al studied the descending ef- ferent PAG projections by using the antero- grade axonal marker Phaseolus vulgaris leucoagglutinin (PHA-L), and found that PAG projections to sympathetic premotor neurons in the RVM [64], indicating that there exist a sympathetic pathway from PAG to RVM. In addition, reports from Fields et al showed that the PAG is responsible for the projection of neuron groups in the region of the RVM in nociceptive modulatory circuits [65]. Braz et al found that neurons of the PAG that project to the RVM were not postsynaptic to 5-HT neurons, suggesting that there is non-5-HT descending control pathway in PAG-RVM neuronal circuitry [66]. There is growing evidence that PAG is an important supraspinal site involved in opioid-mediated analgesia [67]. A previous report considered that stimulation targeting the PAG pro- duced analgesia through the action of endoge- nous opioids on PAG μ-opioid receptors [20, 68, 69]. Findings from Marinelli et al indicated that functional opioid receptor subtypes existed on spinally projecting RVM neurons [8]. Based on our findings, we speculate that PAG-RVM neuronal circuitry may involve in the regulation of opioidergic-sympathetic pathway (Figure 6).

Based on all these findings, our results confirm and extend previous findings that the motor cortex-PAG-RVM circuit plays a crucial role involved in the regulation of nociceptive transmission by melanocortinergic-sympathetic and melanocortinergic-opioidergic pathway. Advances in understanding the motor cortex-PAG-RVM circuit are pointing toward new preventive and symptomatic treatments of chronic pain through endogenous analgesic modulation. Further investigation of the mechanisms involved in this circuit may contribute to the improvement of the clinical treatment of persistent pain.

Acknowledgements

We gratefully acknowledge Dr. Lynn Enquist for kindly providing us with PRV-614 and Dr. Joel Elmquist (UT Southwestern Medical Center) for providing the MC4R-GFP transgenic mice. This work was supported by grants from National Natural Science Foundation of China (No. 81071307, No. 81271766) and Special Fund of Fundamental Scientific Research Business Expense for Higher School of Central Government (2012TS060).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. San-Guang Liu, Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000, P. R. China. E-mail: sanguang1998@sina.com

References

Motor cortex-PAG-RVM neuronal circuitry


[24] Xu AJ, Liu TT, He ZG, Wu W, Xiang HB. Cea-npo circuits and REM sleep dysfunction in drug-re-
Motor cortex-PAG-RVM neuronal circuitry


[33] Hong Q, Fang G, Liu TT, Guan XH, Xiang HB, Liu Z. Posterior pedunculopontine tegmental nucleus may be involved in visual complaints with intractable epilepsy. Epilepsy Behav 2014; 34C: 55-57.


[61] Viisanen H, Pertovaara A. Roles of the rostroventromedial medulla and the spinal 5-ht(1a) receptor in descending antinociception induced by motor cortex stimulation in the neuropathic rat. Neurosci Lett 2010; 476: 133-137.