Case Report
Collision tumor of meningioma and craniopharyngioma: a case report

Chengjun Wang1, Jian Sun1, Qingming Shu2, Jie Liu1, Gengsheng Mao1

Departments of 1Neurosurgery, 2Pathology, General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China

Received November 5, 2015; Accepted January 1, 2016; Epub February 1, 2016; Published February 15, 2016

Abstract: Meningiomas are the commonest benign intracranial tumor, accounting for 13-26% of all primary intracranial tumors. They can arise from the dura at any site. Craniopharyngiomas are uncommon epithelial tumors which represent only 2-5% of all primary intracranial neoplasms and arise anywhere along the path of the craniopharyngeal duct. The co-existence of meningioma and craniopharyngioma has rarely been reported. Herein, we report an unusual case of an anterior fossa meningioma occurring together with a craniopharyngioma, which were radiologically not distinguishable in preoperative imaging. The clinical presentation, preoperative imaging, surgical treatment, histologic features of the two tumors and possible proposed mechanisms leading to the development of two different tumor types in one patient are discussed.

Keywords: Meningioma, craniopharyngioma, collision tumor, skull base

Introduction
Collision tumors are 2 separate growths which are developed simultaneously and in close proximity to each other [1-3]. Meningioma is the commonest intracranial tumor of the anterior and central skull base; craniopharyngioma is a relatively rare neoplasm which usually arises in the suprasellar region [4]. While the occurrence of these brain tumors in one patient which is well known in phakomatoses, such as in neurofibromatosis type 2 (NF-2), or with a history of previous irradiation of the brain [5, 6]. It is a very rare case without these circumstances. To our knowledge, this is the third one of this type of collision tumor to be reported.

Case report
History
A 57-year-old man with no history of neurocutaneous disorders and prior radiation therapy was referred to the department of Neurosurgery with a 1-year history of progressive both sides visual loss and intermittent headache. After a complete ophthalmologic evaluation, he performed an eye campimetry that showed severe decrease of visual acuity associated with bitemporal hemianopsia. The remainder of the neurological examination proved to be normal. His endocrinological assessment was Testosterone 3.21 ng/ml [4.30-25.56], Cortisol (h:8.00) 31.40 ng/ml [50-250], FSH 6.56 mIU/ml [0.7-11.1], LH 1.62 mIU/ml [0.8-7.6], HGH 0.231 ng/ml [0-3], fT3 3.65 pmol/L [2.63-5.70], ft4 12.96 pmol/L [9.00-19.04], TSH 1.234 uIU/ml [0.350-4.940]. Afterwards, CT and MRI imaging of his brain were performed (Figure 1).

Neuroradiology
A computed tomographic scan showed a slightly hyperdense lesion in the anterior fossa and no calcifications within the tumor. MRI of the brain showed a skull base tumor which was composed of two parts. The anterior part is isointense on T1- and T2-weighted sequences and presents a dural sign. The posterior portion of the lesion is isointense on T1-w and hypointense on T2-w sequences, the solid component enhancing obviously after gadolinium administration.

Intervention
In order to save his eyesight, removing the tumor and decompressing optic pathways is in
A case of anterior fossa meningioma

highly needed. He was brought to the operating room and positioned in horizontal position. A fronto-temporal craniotomy on the right side was performed, the sylvian cistern was opened, the frontal lobe retracted and finally the tumor exposed under the operating microscope. We surprisingly found that the mass was composed of two separate tumors, a cranio-pharyngioma and a meningioma with clear broad attachment to the dura of the anterior cranial base. Both tumors were completely removed and the dural base was extensively coagulated.

Pathology and postoperative course

Histopathological workup of both tumor samples confirmed the diagnosis of angiomatous meningioma and adamaninomatous cranio-pharyngioma (grade I sec. WHO classification) (Figure 2), respectively. The postoperative course was uneventful, except for a slight decrease of his visual condition was noted. At the most recent follow up (35 months after surgery), he was symptom free with no radiological recurrence.

Discussion

The simultaneous occurrence of meningioma and other type’s intracranial tumors in the same patient has often been reported in literatures since meningioma is the commonest intracranial tumor of the skull base. Patients with meningioma and cranio-pharyngioma are rare, to date, only five cases have been reported in the English literature, including our patient, their clinical features are summarized in Table 1 [7-10]. Table 1 summarized 5 cases of tumors found in two man and three women with ages ranging from 54 to 81. Among the previous cases only two patients with the two tumors in contiguity (case 3, 4). In the two cases, only tumors in case 4 were originated from the skull base, since the location of the cranio-pharyngioma in case 3 were in the third ventricle [9, 10]. However, among the 4 previously described cases, 3 occurred in the Italian population (case 1, 2, 4) and 1 occurred in the USA (case 3). The present case was the first to occur in a Chinese patient and consequently widening the epidemiological spectrum of this type collision tumor.
The incidence of meningioma is highest after the fifth decade of life while craniopharyngioma has two peak of incidence, from 5 to 10 years and 50 to 60 years of age [11, 12]. In the presented case, the patient’s age was coincident with the epidemiology of the two tumors.

Meningiomas are well-defined, extra-axial masses, they are most commonly isointense or slightly hypointense to brain on T1-weighted imaging and hypointense on T2-weighted imaging, after gadolinium administration, meningiomas show strong homogeneous enhancement. Most commonly, craniopharyngiomas arise in the suprasellar/parasellar region. It is a largely cystic or mixed tumor, with calcifications and solid component enhancing after gadolinium administration. Depend on the protein content of the fluid the cystic component may have variable T1-weighted signal intensity while it is usu-
Table 1. Literature review for the coexistence of meningioma with craniopharyngioma

<table>
<thead>
<tr>
<th>Case</th>
<th>Report year</th>
<th>Age, sex</th>
<th>Symptom, duration</th>
<th>Meningioma</th>
<th>Craniopharyngioma</th>
<th>Treatment</th>
<th>Post-operative course</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1967</td>
<td>54, female</td>
<td>Serious behavior disorders associated with an evident “change of character”, 7-8 moths</td>
<td>A left frontal parasagittal meningioma</td>
<td>Invading the third ventricle</td>
<td>-</td>
<td>-</td>
<td>Died suddenly</td>
</tr>
<tr>
<td>2</td>
<td>1981</td>
<td>65, male</td>
<td>Early morning midfrontal headaches and intellectual deterioration, 3 months</td>
<td>A small meningioma en plaque between the anterior clinoids</td>
<td>In the anterior 3rd ventricle extending into the hypothalamus</td>
<td>Transfrontal craniotomy</td>
<td>NA</td>
<td>Alive and well</td>
</tr>
<tr>
<td>3</td>
<td>2005</td>
<td>61, female</td>
<td>Headache and bilateral visual loss, 3-month</td>
<td>Tuberculum sellae meningioma (about 2 cm in diameter)</td>
<td>Occupied the third ventricle (3.5 cm)</td>
<td>Right pterional approach. Complete removal of the tuberculum sellae meningioma and subtotal excision of the craniopharyngioma.</td>
<td>Died ten days postoperatively for diencephalic failure.</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2011</td>
<td>81, female</td>
<td>Increasing left eye visual loss, bitemporal hemianopsia and bifrontal headache, 1 month</td>
<td>Originating from the anterior cranial base dural surface</td>
<td>Arising from the anterior superior margin of the pituitary gland</td>
<td>Right fronto-temporal craniotomy, both tumors were gross totally removed.</td>
<td>Good recovery, eyesight modest improvement</td>
<td>Alive and well</td>
</tr>
<tr>
<td>Present case</td>
<td>2012</td>
<td>57, male</td>
<td>Progressive both sides visual loss and intermittent headache, 1 year</td>
<td>Anterior cranial base Suprasellar</td>
<td>Right fronto-temporal craniotomy, both tumor were completely removed.</td>
<td>Uneventful</td>
<td>Alive and well</td>
<td></td>
</tr>
</tbody>
</table>
A case of anterior fossa meningioma

not performed on him. Several hypotheses have been proposed to explain the coincidence of two completely separate primary brain tumors of different histogenesis in the same patient: (1) tumors can develop entirely coincidentally; (2) the initial tumor can act as a stimulus on the surrounding cerebral parenchyma or meningeal tissue to induce a new tumor in different tissue; (3) a carcinogenic stimulus may develop tumors in different tissues simultaneously; or (4) a residual embryonic structure becomes the basis for subsequent multiple brain tumor development. Furthermore, several studies have addressed the role of endogenous as well as exogenous hormonal therapy on the risk of meningioma formation [20]. Craniohypophyseal patients present endocrine disturbances in 80-90% [21]. So, we suggest that the hormonal status maybe another cause for the coincidence of meningioma and craniohypophyseal. More research on possible mechanisms leading to the simultaneous occurrence of meningioma and craniohypophyseal has to be done to support this theory.

In conclusion, we have reported what is, to our knowledge, the third one of this type of collision tumor arising in a Chinese patient. The concurrence of meningioma and craniohypophyseal is rare, especially is this type of collision tumors which represents a serious difficulty in imaging and clinical diagnoses. When skull base tumors with imaging examination uncharacteristic are detected, particularly in the elderly patients (since the age of the patients mentioned in Table 1 are all above 50), the diagnosis of co-localization tumors should be kept in mind. More cases of this type collision tumor must be studied to draw definitive conclusions about its mechanism.

Acknowledgements

We are grateful to all the participants during performing this study.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Gengsheng Mao, Department of Neurosurgery, General Hospital of Chinese People’s Armed Police Forces, 69 Yongding Road, Haidian District, Beijing 100039, China. E-mail: gengshengmao@163.com

References

A case of anterior fossa meningioma

