Original Article
Modulated expression levels of tyrosine kinases in spontaneously developed melanoma by single irradiation of non-thermal atmospheric pressure plasmas

Yasuhiro Omata1*, Machiko Iida1*, Ichiro Yajima1, Nobutaka Ohgami1, Masao Maeda1, Hiromasa Ninomiya1, Reina Oshino1, Toyonori Tsuzuki2, Masaru Hori3, Masashi Kato1

1Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; 2Department of Pathology, Nagoya Daini Red Cross Hospital, Showa-ku, Nagoya, Aichi 466-8650, Japan; 3Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. *Equal contributors.

Received November 11, 2015; Accepted January 12, 2016; Epub February 1, 2016; Published February 15, 2016

Abstract: Development of therapy for melanomas without BRAFV600E mutation, which account for about half of all melanomas, is an urgent issue because effective therapy is currently being developed for patients who have melanomas with BRAFV600E mutation. RET-transgenic mice (RET-mice) carrying the RFP-RET oncogene under the control of metallothionein-I promoter spontaneously developed skin melanomas without BrafV600E mutation from benign melanocytic tumors. We previously showed decreased expression levels of cell cycle regulators and matrix metalloproteinases in melanoma from RET-transgenic mice by single irradiation of non-equilibrium atmospheric pressure plasmas (NEAPPs). In this study, we focused on RFP-RET, c-Ret, Epidermal growth factor receptor (Egfr), Vascular endothelial growth factor receptor 2 (Vegfr2) and c-Src kinases, which are correlated with melanoma. We first confirmed significantly increased transcript expression levels of the 5 kinases in melanomas compared to those in benign tumors in RET-mice. We then found that transcript expression levels of c-Ret and Egfr, but not those of RFP-RET, Vegfr2 and c-Src, were significantly decreased by single irradiation of NEAPP. Since EGFR-mediated promotion of melanoma has been reported, we further focused on the mechanism of NEAPP-mediated decrease in the level of Egfr. Transcript expression level of Y box protein 1 (Ybx1), but not those of p53, Early growth factor 1 (Egr1), GC-rich sequence DNA binding factor 2 (Gcf2) and Kluppel-like factor 10 (Klf10), was significantly decreased by single irradiation of NEAPP. These results suggest that NEAPP decreased Egfr expression level through decrease of Ybx1 expression. Our results indicate that NEAPP irradiation to melanoma without BRAFV600E mutation is a possible novel therapy.

Keywords: Non-thermal atmospheric pressure plasmas (NEAPPs), melanoma, tyrosine kinase, Epidermal growth factor receptor (Egfr), Y box protein 1 (Ybx1)

Introduction
The worldwide incidence of melanoma, the most aggressive cutaneous cancer, has recently become higher than that of any other cancer. Recent molecular-targeted therapy for melanomas with BRAFV600E mutation is developing in humans despite recurrence of the melanomas [1]. In fact, the prognosis of patients who have melanoma with BRAFV600E mutation is better than that of patients who have melanoma without BRAFV600E mutation [2]. Therefore, the development of a novel therapy for melanomas without BRAFV600E mutation, which account for about half of all melanomas, is an urgent issue.

Previous studies showed that protein tyrosine kinases (PTKs) play a crucial role in various cancers including melanoma. c-Ret/RET protein is a receptor-type PTK and is activated by dimer formation through its ligands such as a glial cell line-derived neurotrophic factor (GDNF) [3, 4].
We have shown that anchorage-dependent growth of human melanoma cells was increased by interaction of c-RET and GDNF after confirming c-RET expression levels in plural human melanoma cell lines [5]. c-SRC protein, which is expressed in melanoma, is directly associated with c-RET protein and regulates the function of c-RET kinase [6]. RFP-RET of the hybrid gene from c-RET and RFP has an oncogenic activity and is constitutively activated without stimulation of ligands [3, 7]. RFP-RET transgenic mice (RET-mice) carrying RFP-RET under the control of metallothionein-I promoter spontaneously develop benign melanocytic tumors and melanomas without BrafV600E mutation in a stepwise manner [7, 8]. Increased expression levels of epidermal growth factor receptor (Egfr) and vascular endothelial growth factor receptor 2 (Vegfr2) in human melanoma have been reported [9, 10]. These results suggest that RFP-RET, c-RET, Egfr, Vegfr2 and c-Src molecules are involved in the pathogenesis of melanoma.

Attention has recently been paid to medical applications of non-thermal atmospheric pressure plasmas (NEAPPs) consisting of an ionized gas. Previous studies showed anti-cancer effects of NEAPP irradiation in vitro [11-13]. We have also reported suppressed growth of benign melanocytic tumors in RET-mice by repeated NEAPP irradiation via decreased expression levels of cell cycle regulators and matrix metalloproteinases (MMPs) [14-16]. In our previous study, we showed an anti-cancer effect of single NEAPP irradiation to melano-
Effect of plasma irradiation on expression of tyrosine kinase genes

RET-mice spontaneously developed tumors in the skin

Benign melanocytic tumors (Figure 1A, 1B) and melanomas (Figure 1C, 1D) developed spontaneously in our original RET-mice with an intact immune system [7, 8]. Therefore, RET-mice could be a strong tool to develop various therapies for melanomas [17, 18]. Experiments using recombinant DNA were approved by the Recombination DNA Advisory Committee of Nagoya University (no. 12-39, 13-59, 13-76). The animal experiments were approved by the Animal Care and Use Committee of Nagoya University (approval no. 27241).

NEAPP irradiation to tumors in RET-mice

Benign melanocytic tumors and melanomas with or without NEAPP irradiation in RET-mice were used. The NEAPP device used in the present study is shown in Figure 2A. Melanomas were collected and analyzed 6 hours after single NEAPP irradiation for 30 sec for melanoma in RET-mice (Figure 2B) following the method previously described [8].

Quantitative PCR (Q-PCR)

After extracting total RNA from tumors of RET-mice, transcript expression levels were measured by the method described previously [14, 16]. Sequences of primers used are shown in Supplementary Table 1.

Results

Diagnosis of tumors in RET-mice

Benign melanocytic tumors and melanomas in RET-mice were preliminary selected by macroscopic observation (Figure 1A, 1C). After collection of tumors with or without NEAPP irradiation, all of the tumors were histopathologically diagnosed by a trained pathologist (Figure 1B, 1D). A benign melanocytic tumor consisted of uniform cells having round nuclei without mitosis (Figure 1B). Melanoma consisted of atypical cells having various sizes and shapes of nuclei with high mitotic activity (Figure 1D).

Effects of single NEAPP irradiation on expression of 5 tyrosine kinases

Transcript expression levels of RFP-RET, c-Ret, Egfr, Vegfr2 and c-Src in melanomas were 2.0-fold, 1.9-fold, 9.7-fold, 1.2-fold and 2.3-fold higher than those in benign melanocytic...
Effect of plasma irradiation on expression of tyrosine kinase genes

Single NEAPP irradiation decreased expression levels of c-Ret and Egfr transcripts by 70% and 41%, respectively (Figure 3G, 3H). However, the expression levels of RFP-RET, Vegfr2 and c-Src transcripts were comparable in single NEAPP irradiated- and unirradiated-melanomas in RET-mice (Figure 3F, 3I, 3J).

Effects of NEAPP irradiation on expression of transcription factors for Egfr

YBX1, p53 and EGR1 bind to the promoter of the EGFR gene and positively control its transcription in human osteosarcoma, breast cancer and colon cancer cells [21-23]. GCF2 and

Discussion

In this study, we first confirmed higher expression levels of RFP-RET, c-Ret, Egfr, Vegfr2 and c-Src, all of which were previously reported to be associated with melanoma [5, 6, 9, 10], suggesting that the kinases are also associated with melanomas in RET-mice. Then we demonstrated for the first time that expression levels of c-Ret and Egfr transcripts, but not those of RFP-RET, Vegfr2 and c-Src transcripts, in melanomas from RET-mice were decreased by single NEAPP irradiation. Our results showed that the difference in Egfr expression level between benign melanocytic tumors and melanoma is the largest among the 5 kinases. Moreover, the effects of endogenous c-Ret may be replaced by the effects of the introduced RFP-RET in RET-mice. In fact, kinase activity of c-Ret was found to be lower than that of RFP-RET in RET-mice in our previous studies [3, 4, 19]. Together with a previous report showing that EGFR regulates progression and metastasis of human melanoma [20], we focused on Egfr as a representative molecule that was decreased by single NEAPP irradiation.

Kluppel-like factor 10 (Klf-10) in melanomas from RET-mice were further examined. Single NEAPP irradiation decreased the expression level of Ybx1 transcript by 27% (Figure 4A). However, there were comparable expression levels of p53, Egr1, Gcf2 and Klf10 transcripts in melanomas from RET-mice despite single NEAPP irradiation (Figure 4B-E).
Effect of plasma irradiation on expression of tyrosine kinase genes

KLF10 have been reported to be transcriptional repressors of the EGFR gene in human melanoma cells and breast cancer cells, respectively [24, 25]. Our results further showed that single irradiation decreased the transcript expression level of only Ybx1 among the 5 transcription factors for Egfr. These results suggest that single NEAPP irradiation decreases Egfr expression level via decreased level of Ybx1, a transcription factor promoting expression of Egfr, in melanomas without BRAFV600E mutation from RET-mice (Figure 5). Since EGFR could be a clinically potential therapeutic target for melanoma [20], our results suggest that NEAPP irradiation is a novel option for therapy of melanoma without BRAFV600E mutation (Figure 5).

Acknowledgements

This study was supported in part by Grants-in-Aid for Scientific Research (A) (15H01743 and 15H02588) and (B) (24390157), Grant-in-Aid for Challenging Exploratory Research (26670525), Grant-in-Aid for Scientific Research on Innovative Areas (24108001) and Grants-in-Aid for Young Scientists (B) (22770008) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Mitsui & Co., Ltd. Environment Fund, the Mitsubishi Foundation, Foundation from Center for Advanced Medical and Clinical Research Nagoya University Hospital and NOVARTIS Research Foundation (Japan).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Masashi Kato, Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Aichi 466-8550, Japan. Tel: +81-52-744-2122; Fax: +81-52-744-2122; E-mail: katomsasa@med.nagoya-u.ac.jp

References

Figure 4. Transcript expression levels of Ybx1, p53, Egr1, Gcf2 and Klf10 in irradiated melanomas from RET-mice. (A-E) Relative transcript expression levels (means ± SD) of Y box protein 1 (A, Ybx1), p53 (B), Early growth factor 1 (C, Egr1), GC-rich sequence DNA binding factor 2 (D, Gcf2) and Kluppel-like factor 10 (E, Klf10) in untreated (Un, n=5) and NEAPP-treated (Tr, n=6) melanomas from RET-mice are presented. Statistical significance was evaluated by Student’s t-test. *P<0.01.

Figure 5. A schematic pathway for regulation of Egfr expression level. Y box protein 1 (Ybx1), p53 and Early growth response 1 (Egr1) progressively regulate Egfr expression level. GC-rich sequence DNA binding factor 2 (Gcf2) and Kluppel-like factor 10 (Klf10) negatively regulate Egfr expression level. Our results suggest that single irradiation of NEAPP decreases Egfr transcript expression level via suppression of Ybx1 transcript expression. Since EGFR, a regulator for melanoma progression, has been suggested to be a clinical target for melanoma therapy [20], NEAPP may be useful for melanoma therapy.
Effect of plasma irradiation on expression of tyrosine kinase genes

Effect of plasma irradiation on expression of tyrosine kinase genes

Supplementary Table 1. Sequences of primers used in quantitative PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Strand</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFP-RET</td>
<td>Forward</td>
<td>5’ TCACAGGGGATGCAAGCAGTATCT 3’</td>
</tr>
<tr>
<td>RFP-RET</td>
<td>Reverse</td>
<td>5’ CCTGGCTCTCTTACAGCTAG 3’</td>
</tr>
<tr>
<td>c-Ret</td>
<td>Forward</td>
<td>5’ TGACATCAGCAAGATCTGG 3’</td>
</tr>
<tr>
<td>c-Ret</td>
<td>Reverse</td>
<td>5’ CCCAATCGTCATACAGCAGTG 3’</td>
</tr>
<tr>
<td>Egfr</td>
<td>Forward</td>
<td>5’ CAAGTGAGGTGCTTGGATG 3’</td>
</tr>
<tr>
<td>Egfr</td>
<td>Reverse</td>
<td>5’ TCCATCAAGGCTTGGGACC 3’</td>
</tr>
<tr>
<td>Vegfr2</td>
<td>Forward</td>
<td>5’ TGAATCTTTTGCAGGAAAC 3’</td>
</tr>
<tr>
<td>Vegfr2</td>
<td>Reverse</td>
<td>5’ GGCCTCTCATTCTGTACCA 3’</td>
</tr>
<tr>
<td>c-Src</td>
<td>Forward</td>
<td>5’ TCAGGAGGAGAGTGAGAC 3’</td>
</tr>
<tr>
<td>c-Src</td>
<td>Reverse</td>
<td>5’ GCGGGAGGAGAGTGAGAC 3’</td>
</tr>
<tr>
<td>Ybx1</td>
<td>Forward</td>
<td>5’ TGCCATCTCCTAGGCTGTGT 3’</td>
</tr>
<tr>
<td>Ybx1</td>
<td>Reverse</td>
<td>5’ TGTACGCTCTTCCGAAAGAC 3’</td>
</tr>
<tr>
<td>p53</td>
<td>Forward</td>
<td>5’ ATCGTCCATGCAAGGCTGTG 3’</td>
</tr>
<tr>
<td>p53</td>
<td>Reverse</td>
<td>5’ GGGTCCATGCAAGGCTGTG 3’</td>
</tr>
<tr>
<td>Egr1</td>
<td>Forward</td>
<td>5’ GAGCGAACAACCTATGAGC 3’</td>
</tr>
<tr>
<td>Egr1</td>
<td>Reverse</td>
<td>5’ TTTGGCTGGGATAACTGTG 3’</td>
</tr>
<tr>
<td>Gcf2</td>
<td>Forward</td>
<td>5’ AACTCCAAATGACAGGCTGGG 3’</td>
</tr>
<tr>
<td>Gcf2</td>
<td>Reverse</td>
<td>5’ GAGAACTTTTCTGCCCAGT 3’</td>
</tr>
<tr>
<td>Klf10</td>
<td>Forward</td>
<td>5’ AGCAAGGAGTCTCCTCAGA 3’</td>
</tr>
<tr>
<td>Klf10</td>
<td>Reverse</td>
<td>5’ TGAAGGTTCCTCCTCCTAGA 3’</td>
</tr>
<tr>
<td>Hprt</td>
<td>Forward</td>
<td>5’ TATGCTCCGTTGACTGTG 3’</td>
</tr>
<tr>
<td>Hprt</td>
<td>Reverse</td>
<td>5’ CTTGCTGACCTGCTGGAT 3’</td>
</tr>
</tbody>
</table>