Case Report

Bilateral lymph node metastases from primary uterine carcinosarcoma: an immunohistochemical case study

Andrzej Semczuk¹, Dorota Lewkowicz², Maciej Jóźwik³, Adam Mrozek⁴, Marek Gogacz¹, Anna Semczuk-Sikora⁵, Tomasz Rechberger¹

¹II ND Department of Gynecology, Lublin Medical University, Lublin, Poland; ²Department of Clinical Pathology, Lublin Medical University, Lublin, Poland; ³Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, Białystok, Poland; ⁴Department of Obstetrics and Gynecology, Municipal Hospital, Rzeszów, Poland; ⁵Department of Obstetrics and Pathology of Pregnancy, Lublin Medical University, Lublin, Poland

Received March 30, 2016; Accepted June 11, 2016; Epub August 1, 2016; Published August 15, 2016

Abstract: Uterine carcinosarcomas (UCs) are extremely rare but highly malignant neoplasms originating in female genital tract. The 5-year survival of advanced-stage UCs is not satisfactory yet, being below 10%. They metastasize to different organs, most frequently to the lungs (49%), peritoneum (44%), as well as to the pelvic and para-aortic lymph nodes (35%). Herein, we report a case of a 64-year-old woman with a primary UC metastasizing bilaterally to the pelvic lymph nodes. We applied a panel of immunohistochemical markers to assess the staining pattern of the primary tumor and corresponding metastases. In this assessment, the carcinoma component of the UC and lymph node metastases showed similar staining patterns, except for EP4 and p53, being positive in primary tumor and right side metastases. On the other hand, sarcoma component and lymph node metastases showed differences in some of the markers applied. MIB-1 proliferative activity was slightly higher in bilateral pelvic lymph node metastases compared to UC components. Our case report supports the concept of the epithelial component being the driving force for female genital tract UCs as our patient presented a similar staining pattern of carcinomatous component-lymph node metastases in selected markers.

Keywords: Uterine carcinosarcoma, immunohistochemistry, lymph node metastasis, p53

Introduction

Uterine carcinosarcomas (UCs) are extremely rare but highly malignant neoplasms originating in female genital tract [1-3]. They account for less than 5% of all uterine malignancies but their development is associated with >15% of cancer-related deaths [3, 4]. In early clinical stages of the disease (FIGO stages I-II) 5-year survival rates are between 30-46%, whereas the 5-year survival for advanced-stage (FIGO stages III-IV) UCs is unsatisfactory, at only 0-10% [1-4].

In general, UC metastases are related to lymph node positivity, depth of myometrial invasion, cervical tumor extension, lymphovascular space invasion, as well as low degree of differentiation in the carcinomatous component [3]. UCs metastasize to different organs, most frequently to the lungs (49% of cases), peritoneum (44%), as well as to the pelvic and para-aortic lymph nodes (35%) [1-4]. UCs are biphasic neoplasms and their clinical behavior is strictly connected with the components of the tumor. Molecular as well as immunohistochemical data support the thesis that the carcinoma component is the driving force during the process of tumor dissemination [5-8]. Previously, Sreenan and Hart [5] reported that extraterine UC metastases are composed of a carcinoma component (70%), while a sarcoma component alone was present in only few cases. Finally, Kanthan and Senger [1] assumed that “the metastatic lesions almost always contain elements of carcinoma with or without a coexisting sarcoma, and solitary sarcomatous metastasis is uncommon”.

We report herein a case of a patient with primary UC metastasizing bilaterally to the pelvic lymph nodes. We briefly discuss the role of UC
Lymph node metastases from uterine carcinosarcoma

Table 1. Immunohistochemical markers in different areas of a primary uterine carcinosarcoma with bilateral pelvic lymph node metastases

<table>
<thead>
<tr>
<th>Marker</th>
<th>UC Carcinomatous component</th>
<th>UC Sarcomatous component</th>
<th>Pelvic lymph node metastases Right side</th>
<th>Pelvic lymph node metastases Left side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokeratin</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CK AE1/AE3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vimentin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Desmin</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Actin</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SMA</td>
<td>- Focal +</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myo D1</td>
<td>- Focal +</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myf 4</td>
<td>- Focal +</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD31*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD34*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EP4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>AR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PgR</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ER α</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD68</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Caldesmon</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S-100</td>
<td>Weak +</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ki-67 (%)</td>
<td>80</td>
<td>60</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>p53</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Positivity was only reported in blood vessels; AR-androgen receptor, PgR-progesterone receptor, ER α-estrogen receptor α.

components, particularly in the case of lymph node metastases, applying a panel of immunohistochemical markers.

Case report

In March 2015, a 64-year-old Caucasian woman, gravida 2, para 2, was admitted to the II Department of Gynecology, Lublin Medical University, Lublin, Poland. She had suffered from abnormal vaginal bleeding for two weeks and a Pipella® endometrial sampling was performed. The histopathological examination revealed a UC. She had her first menstruation at the age of 14 and subsequent menstrual cycles were normal. She experienced menopause at 55 years. There was no family history of female genital tract malignancies, but her sister suffered from renal cancer. She had not been exposed to exogenous hormones within the last 5 years. Cervical smear performed a year earlier was normal. No abdominal tenderness or rebound tenderness was identified on physical examination; vital signs and level of consciousness were normal. Pelvic examination disclosed an enlarged uterus with normal ovaries, uterine cervix, and vagina. An ultrasound scan showed endometrial thickness of 27 mm, a uterine polyp of 25 mm, an enlarged uterus measuring 8.0×8.0×4.5 cm with two leiomyomas, and normal-sized ovaries. A complete blood count, urinalysis, serologic tests, electrocardiogram, and chest X-ray were all within normal range. Serum CA125 level was elevated (120 U/mL). A total abdominal hysterectomy with bilateral salpingo-oophorectomy, pelvic lymphadenectomy, omentum sampling and peritoneal washings was carried out during surgery. The tumor was located at the uterine isthmus, infiltrating the endocervix. The peritoneal washings revealed normal cells (lymphocytes, granulocytes, mesothelial cells, and erythrocytes). Histopathological examination of post-surgical material revealed a UC of the heterologous type (rhabdomyosarcoma and chondrosarcoma) with endometrioid endometrial adenocarcinoma, infiltrating less than half the myometrial wall depth but invading the endocervix. The sarcomatous component was detected both in the endometrial polyp and the uterus, whereas a carcinomatous component was present in the uterus infiltrating the myometrium. Moreover, two uterine leiomyomas of 2.5 cm and 1.0 cm in diameter were confirmed. UC metastases were found to be present in pelvic lymph nodes on both sides and were composed of carcinoma cells. The tumor was concluded to be stage IIIC1 [9]. The postoperative course was uneventful and the patient was discharged on Day 7 postoperatively. She was referred to the Oncology Hospital, Lublin, Poland, where six courses of adjuvant chemotherapy with paclitaxel-carboplatin were administered. Additional imaging studies (ultrasound and positron emission tomography) showed no evidence of recurrence at 10 months postsurgery.

Immunohistochemical assessment of a panel of 20 primary monoclonal antibodies was applied with the REAL™ EnVision™/HRP (DAKO,
Lymph node metastases from uterine carcinosarcoma

Glostrup, Denmark) method. Antibodies used for independent staining in both CS components and bilateral pelvic lymph node metastases are depicted at Table 1. Appropriate positive controls for each staining and negative controls (sections processed without primary antibodies) were applied in each experiment. All staining results were carefully evaluated by a highly-experienced pathologist (D.L.).

Overall, the carcinoma component of the UC and lymph node metastases showed similar staining patterns, except for EP4 and p53, being positive only in right side metastases (Table 1). p53 was expressed in both tumor components but, surprisingly, was negative in left side pelvic node metastases (Figure 1). On the other hand, sarcoma component and lymph node metastases showed differences in some of the markers applied. For example, sarcoma component was negative for progesterone receptor expression while the right and left side lymph node metastases were positive. MIB-1 proliferative activity, assessed by PI (Proliferative Index), was slightly higher in bilateral pelvic lymph node metastases compared to UC components (Table 1).

Discussion

In our case study, we present a primary UC with bilateral metastases to pelvic lymph nodes and invasion of the endocervix, although tumor infiltration was less than half of the myometrial wall. Consequently, it was staged FIGO IIIIC1. Based on a literature review, clinical stage was reported to be the most unfavorable prognostic factor in patients operated on with UCs [10-14]. Moreover, patient’s age, depth of myometrial infiltration, and residual tumor were also inde-
Independent prognostic factors [10]. However, it is still unclear whether other prognosticators, for example initial tumor size, lymphovascular space involvement, endometrioid adenocarcinoma as the carcinomatous component, or the lack of a heterologous component in the sarcomatous area, are poor prognostic factors [15]. Callister and co-workers [11] reported that cervical involvement, apart from postmenopausal status, uterine length >10 cm, and peritoneal dissemination, were all unfavorable prognostic factors in multivariate analyses. Data regarding cervical involvement is of utmost importance because even early-stage UC may give extra-uterine spread, remarkably decreasing patient’s overall survival [1, 14].

Immunohistochemistry is a valuable diagnostic tool providing important information on markers in tissue sections [16, 17]. Moreover, it can be applied for differentiating a narrow morphologic diagnosis [16]. In primary carcinosarcomas of the female genital tract, the nature and the histogenesis of malignant tumor areas may also be assessed by different immunohistochemical markers [8, 18-22]. Immunostaining for an array of antigens in carcinomatous and sarcomatous areas of primary UC has previously been described by our laboratory [22].

In this study, we reported differences in reactivity of selected markers: Ki-67, p53, EP4, and progesterone receptor, between a primary tumor and paired metastases (Table 1). Interestingly, the expression pattern of Ki-67 immunoreactivity was higher in pelvic lymph node metastases compared to both UC components. Data concerning the evaluation of immunohistochemical markers, especially Ki-67, in primary UCs and paired metastases are scarce [8, 22, 23]. In our previous study, only one of 3 tumor-metastasis pairs displayed a significant difference in Ki-67 immunoreactivity, being higher in carcinomatous tissue and ovarian metastasis compared to mesenchymal tumor area [22]. A similar Ki-67 expression pattern in primary tumors and corresponding metastases was published by Swisher et al. [23]. Surprisingly, in a case of UC recurrence, MIB-1 expression was lower (2+) compared to primary tumor (4+) and corresponding metastasis (4+) [23].

Data published by Klein and co-investigators [24] suggested a high heterogeneity of early disseminated cells in minimal residual cancer. Although the heterogeneity of primary tumor cells has been known for a long time [25, 26], “clinically evident metastasis is apparently preceded by a genetic diversification present in early-disseminated tumour cells, from which certain, more aggressive, and ‘fitter’ genotypes are selected” [24]. For these reasons, apparently different tumor genotypes may be responsible for the variations of immunohistochemical patterns between paired primary and metastatic tumors. Furthermore, the immunohistochemical staining differences between paired primary tumor and metastases may also be associated with more aggressive biological behavior of the carcinomatous component than the sarcomatous. Our case report supports the concept of the epithelial component being the driving force for female genital tract carcinosarcomas as our patient presented a similar staining pattern of carcinomatous component-lymph node metastases in selected markers.

Acknowledgements

We would like to thank Mrs Mariola Bigas and Mrs Maria Nowak for their immunostaining analysis and Mr Robert Klepacz for his expertise in high-quality photographs. Our study was supported by a grant from the Lublin Medical University, Lublin, Poland (Dz. St. 326/16 to A.S.).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Andrzej Semczuk, II Department of Gynecology, Lublin Medical University, 8 Jaczewski Street, Lublin 20-954, Poland. Tel: +48 81 7244268; Fax: +48 81 7244849; E-mail: andrzej.semczuk@am.lublin.pl

References

Lymph node metastases from uterine carcinosarcoma


