Original Article

Hypermethylation of SCNN1A gene-body increases the risk of essential hypertension

Shuqi Mao1*, Rui Fan1,3*, Tianlun Gu1, Qilong Zhong2, Minli Gong2, Changzheng Dong1, Linmei Hao2, Lina Zhang1

1Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China; 2Clinical Laboratory, Seventh Hospital of Ningbo, Ningbo, China; 3Department of Medical Quality, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, China. *Equal contributors.

Received April 9, 2016; Accepted June 13, 2016; Epub August 1, 2016; Published August 15, 2016

Abstract: The goal of this study was to investigate the contribution of nonvoltage-gated 1 alpha subunit (SCNN1A) gene-body methylation of essential hypertension (EH), and to explore whether the methylation level could be altered by antihypertensive therapy. Our study performed methylation analysis of peripheral blood DNA using bisulphite pyrosequencing technology among 60 non-EH controls, 60 incident EH cases and 60 prevalent EH cases. Our results reported that the incident cases had a higher SCNN1A methylation level than the non-EH controls (16.15±4.51 versus 13.66±4.08, P=0.041), and prevalent cases (16.15±4.51 versus 13.77±3.90, P=0.002). Logistic regression analysis results showed that SCNN1A hypermethylation was the risk factor of EH in incident cases compared with non-EH (OR=1.157, P=0.01), and in incident cases compared with prevalent cases (OR=1.149, P=0.013). The SCNN1A methylation level was found to be positively correlated with age in non-EH (r=0.343, P=0.007). Significantly higher methylation level was identified in female than male in non-EH (t=3.878, P=2.71×10^-4). Receiver operating characteristic (ROC) curve analysis revealed that 10.833% methylation level is an appropriate cut-off value for the SCNN1A gene-body methylation to predict the onset of EH between non-EH and incident cases (area under curve: 0.638, P<0.009, 95% CI: 0.539~0.736). In conclusion, our study indicated hypermethylation of SCNN1A gene-body was associated with the risk of EH, SCNN1A gene-body methylation has an important diagnostic value to EH, and SCNN1A gene-body methylation level could be modified by age, gender and antihypertensive therapy.

Keywords: Epigenetic, DNA methylation, SCNN1A gene, essential hypertension

Introduction

Essential hypertension (EH), one of the leading causes of death worldwide, is a multifactorial disease. Hosts of environmental factors, such as high sodium, low potassium diet, overweight and obesity, alcohol consumption, and long-term psychological stress, were documented to be the risk factors of EH in epidemiology studies [1, 2]. In addition, the important role of genetic components in EH was indicated in genome-wide studies [3-6]. However, the pathogenesis of EH remains unclear.

Recently, DNA methylation, a critical way of epigenetic mechanisms, was reported to play a significant regulatory role in gene expression and be associated with EH. Promoter DNA methylation could silence the transcription of the genes [7, 8], and gene-body methylation was positively correlated with gene activity [9-11]. In previous studies, aberrant promoter DNA methylation of ADD1 [2], 11β-HSD2 [12], NKCC1 [13] and gene-body methylation of GCK were indicated to be made in association with EH [14]. Furthermore, DNA methylation is both stable and changeable compared with the stable DNA sequence and rapidly changing fate of mRNA, DNA methylation levels could be altered by the drugs therapy [15].

Epithelial sodium channel (ENaC), the nonvoltage-gated sodium channel, is made of three homologous subunits (α, β, and γ), and alpha subunit (SCNN1A) is absolutely required for the sodium channel activity. ENaC plays a critical role in maintaining the extracellular fluid volume, blood pressure, and sodium homeostatic.
Association between SCNN1A gene methylation and EH.

In the present research, we tried to study whether SCNN1A gene-body methylation was associated with EH, investigate the difference of SCNN1A methylation levels and clinical biochemical indicators among the non-EH controls, incident EH cases (In-EH), and prevalent EH cases (Pre-EH). And, we evaluated the diagnostic value of SCNN1A gene-body methylation by ROC curve analysis. We also accessed the relationship of SCNN1A methylation with gender, drinking, and smoking. DNA methylation was regarded to be modified by drugs in some researches. So our study also attempted to investigate the effects of antihypertensive therapy to SCNN1A methylation.

Materials and methods

Sample collection

This study included 60 non-EH controls, 60 incident EH cases and 60 prevalent EH cases collected from the Ningbo Seventh Hospital in Ningbo city of Zhejiang province, China. All of the people were Han Chinese residing in Ningbo city for at least three generations. Gender and age were well matched among three groups. Hypertensive patients were determined by the golden standard [18]. All the hypertensive patients had received antihypertensive medication for >3 months or had at least three consecutive records of systolic blood pressures (SBP) >140 mmHg and/or diastolic blood pressure (DBP) >90 mmHg. Incident EH cases (In-EH) were hypertensive patients who had never received antihypertensive drugs therapy. Prevalent EH cases (Pre-EH) were hypertensive
patients who had received antihypertensive drugs therapy. In addition, the non-EH controls were those individuals who exhibited SBP <120 mm Hg and DBP <80 mmHg, and had never taken any antihypertensive therapy and had no family history of hypertension. All the people didn’t have a history of secondary hypertension, diabetes mellitus, renal failure, myocardial infarction, drug abuse, stroke and other serious diseases. The clinical indicators data was acquired from Ningbo Seventh Hospital and acquired the patient’s agreement. Blood samples were obtained after a 12 h overnight fast from the antecubital vein using vacutainer tubed containing EDTA and then stored at -80°C for DNA extraction. The study protocol was approved by the Ningbo Seventh Hospital. Informed written consent was obtained from all subjects.

Biochemical analyses

Plasma levels of triglyceride, alanine transaminase, total cholesterol; glucose were measured by an Olympus AU2700 automatic analyzer (Olympus, Tokyo, Japan). Nucleic acid extraction analyzer (Lab-Aid 820; Zeesan Biotech, Xiamen, China) was used to extract genomic DNA from the blood samples. The concentration of DNA was measured by an ultramicro nucleic acid ultraviolet tester (Nano Drop 1000; Thermo Fisher Scientific, Wilmington, Del, USA). Genomic DNA was prepared from peripheral blood samples using the nucleic acid extraction automatic analyzer (Lab-Aid 820, Xiamen City, China). DNA was quantified using the double strand DNA (dsDNA) Quantification Kit (Molecular Probes, Inc. Eugene, USA). Six CpG dinucleotides methylation levels were detected by bisulphate pyrosequencing technology in the SCNN1A gene-body (Figure 1). Sodium bisulphite DNA conversion chemistry combines pyrosequeencing assays. The advantage of the bisulphite pyrosequencing technology was that it was highly efficient, accurate and quantitative, and the results could be repeated. Polymerase chain reaction (PCR) amplification and sequencing of the target sequence were performed by synthesis assay (PyroMark Glod Q96 Reagents, Qiagen #972804). PCR amplification was performed in reaction mixtures containing 1.2 µl ZymoTaq™ Premix (Zymo Research Corporation, Irvine, California, USA), 1.5 µl forward primer, 1.5 µl reverse primer, 2 µl converted DNA and 8 µl DNAase/RNAase free waters, conducted using an Eppendorf Mastercycler Nexus Gradient (Eppendorf, Hamburg, Germany) under the following conditions: 95°C for 10 min, 40 cycles of 95°C for 30 secs, then 57.2°C for 40 secs and 72°C for 50 secs, followed by one cycle of 72°C for 7 min. Primers were designed using PyroMark Assay Design software v2.0.1.15. Primers were as follows: Forward primer: 5'-GGTGAAGGGAATAGGTGGTTG-3'; Reverse primer: 5'-Biotin-TCTCCTTCAATAACAATCCACAAATAC-3'; Sequencing primer: 5'-GGGTAAATAGGTGTGT-3.

Statistics analysis

Statistics analysis was performed with PASW Statistics 19.0 software (SPSS, Inc., Somers, NY, USA). The mean of continuous variables (including age, BMI, total cholesterol, triglyceride, glucose, ALT, and DNA methylation levels) among the three groups were tested by one-way ANOVA. Either Pearson chi-square or Fisher exact test was used for the association of EH with categorical variables including gender, smoking and drinking. The relationship of CpG1 to CpG6 was analyzed by Bivariate correlation analysis. Logistic regression analysis was used to evaluate the relative risk or odds of SCNN1A gene methylation and clinical index variables. Logistic regression analysis was also utilized to adjust for confounding factors. A two sample t-test analyses was performed to analyze the differences of SCNN1A methylation level in gender among three groups. Receiver operating characteristic (ROC) curves were used to explore the sensitivity of SCNN1A methylation
SCNN1A gene methylation in essential hypertension

Results

Methylation differences of SCNN1A gene-body among three groups

In this research, we could not find specific CpG islands in SCNN1A gene promoter, so six CpGs in SCNN1A gene-body were selected to explore the relationship between SCNN1A methylation and EH (Figure 1). As Figure 1 showed, six CpGs in SCNN1A were highly correlated ($r>0.86$, $P<0.01$). So we regarded the six CpG sites as one CpG site using the average of the six CpG sites methylation levels from each individual. We also presented the Figure 5 to explain methylation level of six individual CpGs comparing Control, In-EH, Pre-EH groups. The PCR primers were designed for the amplification of the CpG islands region of SCNN1A gene-body. Results of One-Way ANOVA showed that CpG1-6 methylation level was different among three groups ($F=6.799$, $P=0.001$, Table 1). So we took multiple comparisons to examine the difference between every two groups (Table 2). Significantly higher SCNN1A methylation level was observed in incident cases than non-EH (16.15±4.51 versus 13.66±4.08, $t=3.26$, $P=0.001$), and prevalent cases (16.15±4.51 versus 13.77±3.90, $t=3.11$, $P=0.002$). But no difference in SCNN1A gene-body methylation level between non-EH and prevalent cases ($t=0.15$, $P=0.911$) was discovered.

Drug impact to SCNN1A gene-body methylation

Binary Logistic regression analysis was used to analyze the impact of anti-hypertensive drugs therapy to SCNN1A gene-body methylation (Table 3). The results indicated that CpG1-6 methylation level was considerably higher in incident cases than non-EH (OR=1.157, $P=0.010$), and prevalent cases (OR=1.149, $P=0.013$). SCNN1A gene-body methylation was important risk factor of EH. But there were not any differences between non-EH and prevalent cases (OR=1.005, $P=0.934$).

Correlation between age and gene-body methylation of SCNN1A

Recent researches have documented the aging is linked to the DNA methylation [19, 20]. We accessed the correlation between aging and CpG1-6 methylation level among three groups (non-EH: $r=0.343$, $P=0.007$; incidence cases: $r=0.158$, $P=0.228$; prevalent cases: $r=0.243$, $P=0.061$, Figure 2).

Gender difference of SCNN1A gene-body methylation

As shown in Figure 3 higher CpG1-6 methylation level was observed in female than male in non-EH ($t=-3.878$, $P=2.71E-4$, Figure 3), not in incident cases ($t=-1.133$, $P=0.262$, Figure 3) and prevalent cases ($t=-1.661$, $P=0.104$, Figure 3). In male, we found higher CpG1-6 methylation level in incident cases than non-EH (15.25±3.50 versus 11.16±3.77, $t=3.58$, $P=0.001$, Table 4) and prevalent cases (15.25±3.50 versus 12.65±3.84, $t=2.28$, $P=0.026$, Table 4). In female, we found higher CpG1-6 methylation level in incident cases than prevalent cases (16.63±4.94 versus 14.38±3.85, $t=2.38$, $P=0.019$, Table 4).

Diagnostic value of SCNN1A gene-body methylation

As shown in Figure 4, receiver operating characteristic (ROC) curve analysis revealed that 10.833% CpG1-6 methylation level was an appropriate cut-off value for the SCNN1A gene-
SCNN1A gene methylation in essential hypertension

Figure 5. Methylation level of six individual CpGs comparing Control, In-EH, Pre-EH groups.

Table 1. Characteristics of three groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Controls (Mean ± sd)</th>
<th>In-EH (Mean ± sd)</th>
<th>Pre-EH (Mean ± sd)</th>
<th>F/χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>57.52±7.29</td>
<td>58.05±7.89</td>
<td>57.92±8.03</td>
<td>0.077</td>
<td>0.926</td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>21/39</td>
<td>21/39</td>
<td>21/39</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Smoking (Y/N)</td>
<td>11/49</td>
<td>12/48</td>
<td>15/45</td>
<td>0.867</td>
<td>0.648</td>
</tr>
<tr>
<td>Drinking (Y/N)</td>
<td>5/55</td>
<td>13/47</td>
<td>13/47</td>
<td>4.988</td>
<td>0.083</td>
</tr>
<tr>
<td>BMI</td>
<td>22.43±3.02</td>
<td>24.46±2.68</td>
<td>24.60±3.03</td>
<td>10.431</td>
<td>5.22×10⁻⁵</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>5.14±1.02</td>
<td>5.37±1.11</td>
<td>5.40±1.10</td>
<td>1.075</td>
<td>0.343</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.59±1.00</td>
<td>1.92±1.19</td>
<td>1.48±0.59</td>
<td>3.418</td>
<td>0.035</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>5.25±0.55</td>
<td>5.40±0.61</td>
<td>5.62±0.89</td>
<td>4.727</td>
<td>0.015</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>22.30±27.68</td>
<td>26.63±19.49</td>
<td>22.73±13.83</td>
<td>0.767</td>
<td>0.466</td>
</tr>
<tr>
<td>CpG1-6 Methylation (%)</td>
<td>13.66±4.08</td>
<td>16.15±4.51</td>
<td>13.77±3.90</td>
<td>6.799</td>
<td>0.001</td>
</tr>
</tbody>
</table>

BMI, body mass index; TC, total cholesterol; TG, triglycerides; ALT, alanine transaminase; In-EH, Incidence EH cases; Pre-EH, Prevalent EH cases.

Table 2. Characters’ multiple comparisons LSD (least significant difference t test)

<table>
<thead>
<tr>
<th>Characters</th>
<th>Controls vs. In-EH</th>
<th>In-EH vs. Pre-EH</th>
<th>Controls vs. Pre-EH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t/χ²</td>
<td>P</td>
<td>t/χ²</td>
</tr>
<tr>
<td>BMI</td>
<td>3.82</td>
<td>1.84×10⁻⁴</td>
<td>0.26</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.88</td>
<td>0.062</td>
<td>2.51</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>1.17</td>
<td>0.246</td>
<td>1.73</td>
</tr>
<tr>
<td>CpG1-6 Methylation (%)</td>
<td>3.26</td>
<td>0.001</td>
<td>3.11</td>
</tr>
<tr>
<td>Drinking</td>
<td>4.18</td>
<td>0.041</td>
<td>0.00</td>
</tr>
</tbody>
</table>

BMI, body mass index; TG, triglycerides; In-EH, Incidence EH cases; Pre-EH, Prevalent EH cases.

In addition, we compared the risk factors (BMI, total cholesterol, triglyceride, Glucose) us-
Table 3. Variables in the logistic regression model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Controls vs. In-EH</th>
<th>In-EH vs. Pre-EH</th>
<th>Controls vs. Pre-EH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>OR</td>
<td>P</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.280</td>
<td>0.756</td>
<td>0.640</td>
</tr>
<tr>
<td>Age</td>
<td>0.003</td>
<td>1.003</td>
<td>0.919</td>
</tr>
<tr>
<td>BMI</td>
<td>0.221</td>
<td>1.247</td>
<td>0.004</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>0.178</td>
<td>1.195</td>
<td>0.411</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>0.155</td>
<td>1.167</td>
<td>0.443</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>0.231</td>
<td>1.260</td>
<td>0.553</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>-0.004</td>
<td>0.996</td>
<td>0.645</td>
</tr>
<tr>
<td>Cpg1-6</td>
<td>0.146</td>
<td>1.157</td>
<td>0.010</td>
</tr>
<tr>
<td>Smoking</td>
<td>-0.284</td>
<td>0.753</td>
<td>0.677</td>
</tr>
<tr>
<td>Drinking</td>
<td>1.512</td>
<td>4.535</td>
<td>0.056</td>
</tr>
<tr>
<td>Constant</td>
<td>-7.774</td>
<td>6.86×10⁻⁶</td>
<td>0.003</td>
</tr>
</tbody>
</table>

BMI, body mass index; TC, total cholesterol; TG, triglycerides; ALT, alanine transaminase; In-EH, Incidence EH cases; Pre-EH, Prevalent EH cases; *P-values were adjusted for age, sex, gender, BMI, TC, TG, Glucose, ALT, Smoking and Drinking.

Table 4. Comparison of methylation level among three groups stratified by gender

<table>
<thead>
<tr>
<th>Gender</th>
<th>Controls (Mean ± sd)</th>
<th>In-EH (Mean ± sd)</th>
<th>Pre-EH (Mean ± sd)</th>
<th>Controls vs. In-EH</th>
<th>In-EH vs. Pre-EH</th>
<th>Controls vs. Pre-EH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>P</td>
<td>t</td>
<td>P</td>
<td>t</td>
<td>P</td>
</tr>
<tr>
<td>Males</td>
<td>11.16±3.77</td>
<td>15.25±3.50</td>
<td>12.65±3.84</td>
<td>3.58</td>
<td>0.001</td>
<td>2.28</td>
</tr>
<tr>
<td>Females</td>
<td>15.01±3.62</td>
<td>16.63±4.94</td>
<td>14.38±3.85</td>
<td>1.71</td>
<td>0.089</td>
<td>2.38</td>
</tr>
</tbody>
</table>

In-EH, Incidence EH cases; Pre-EH, Prevalent EH cases.

Alcohol consumption and hypertension

We found a significant difference in the ratio of alcohol consumption between cases and non-EH using Chi-square test ($\chi^2=4.183$, $P=0.041$, Table 1). We could not find the difference of the ratio of smoking consumption among three groups ($\chi^2=0.867$, $P=0.648$, Table 2).

Discussion

ENaC gene is an important candidate gene of essential hypertension. Our results indicated that the incident cases had a hypermethylation level of SCNN1A gene-body than non-EH controls, and prevalent cases. SCNN1A gene-body methylation not only was a significant important risk factor but also was a new diagnostic index of EH. In addition, we found SCNN1A gene-body methylation level was positively correlated with age in non-EH controls, and SCNN1A gene-body methylation level in female was higher than male.

As is shown in recent studies, positive correlation between gene-body methylation and gene expression was observed in human cells [10, 21, 22]. Gene-body methylation was correlated with hosts of diseases through regulating gene expressions [23-25]. Consequently, the SCNN1A gene-body methylation may be associated with ENaC gene mRNA expression. In addition, global DNA methylation analysis of human atherosclerotic plaques was also revealed that hypomethylation of promoter and hypermethylation of gene-body was associated with stimulated mRNA expression of imprint locus 14p32 [26]. Glucokinase (GCK) gene-body methylation was reported to increase the risk of EH and coronary heart disease [27]. So we speculate...
that the increase of SCNN1A gene-body methylation may influence the transcription and gene expression. Furthermore, ENaC played a notable role in the regulation of extracellular fluid volume and blood pressure [28, 29]. The mice model showed that αENaC was liable to be critical to the overall salt balance, compared with βENaC and γENaC [30]. For this reason, in our study, the increase of SCNN1A gene-body methylation might impact SCNN1A gene transcription and expression, and increase Na⁺ absorption, water retention largely, finally lead to EH. Furthermore, Receiver operating characteristic (ROC) curve analysis revealed that SCNN1A gene-body methylation level is an appropriate cut-off value to predict the onset of EH. This result was in agreement with our previous research about ADD1 gene methylation [31]. So we think the gene methylation may become a useful diagnostic criteria to predict the EH. However, the exact mechanism is not clear, ongoing study is required.

Previously, glucocorticoid was reported to have an impact on AT1b angiotensin receptor gene methylation levels and expression [32]. Recent colorectal cancer cells experiment also showed that the combination of DNA methyltransferase inhibitor (5-azacytidine, decitabine) and standard chemotherapeutics (oxaliplatin, 5-fluorouracil) could be a novel therapeutic approach to improve the curative effect of patients with colorectal cancer [15]. In addition, the DNA methyltransferase inhibitor 5-azacytidine, 5-aza-2’-deoxycytidine (decitabine) have been approved for the cure of hematological malignancies as epigenetic drugs by the American Food and Drug Administration (FDA). All the above researches suggest that gene methylation could be changed by drugs treatment of EH. Similarly, our study revealed the difference of methylation level among three groups, suggesting the anti-hypertension drugs therapy might change SCNN1A gene-body methylation level. Notably, the main difference between In-EH group and Pre-EH group was the patients whether had received antihypertensive drugs therapy. Furthermore, In-EH group showed differential methylation against control whereas there was no change between control and Pre-EH group, which further evidenced antihypertensive drugs therapy might reduce methylation level of Pre-EH and eventually lead to no difference between Pre-EH and control. However, different antihypertensive drugs have different mechanisms of action. In the present, although we found antihypertensive drugs likely decreased the gene-body methylation of SCNN1A, we did not know what kind of antihypertensive drug therapy caused this alteration. Therefore, ongoing studies with the specified information of antihypertensive drug are needed to confirm our finding.

It is well known that age is a risk factor in the progressing of hypertension [33-35]. Gene methylation level may be changed over time by the hereditary factors, environmental factors, and their interactions with each other. Aberrant DNA methylation was associated with the age-related diseases such as cancer [36-38], cardiovascular disease [39, 40], diabetes mellitus [41]. It’s reported that ADD1 and GCK gene hypermethylation was associated with rising age in EH [2, 14]. The results we have observed the age-related increase in SCNN1A gene-body methylation in non-EH controls were consistent with these studies. In addition, gender difference of SCNN1A gene-body methylation was identified in our study. The methylation level in females was higher than males. Consistent with our study, gender differences of the gene methylation level were explored in human tissues in other studies [42-45]. A genome-wide DNA methylation analysis showed that the females had a higher methylation level compared with males on the X chromosome in human pancreatic islets, and the altered methylation level could induce the pancreatic islets differential gene expression [46].

There are a few limitations of our research. For example, ENaC gene was expressed in many human tissues, but we only tested the gene methylation in human peripheral blood, although many evidence indicated that CpG methylation patterns were similar between peripheral blood and other tissues [47-49]. On the other hand, we didn’t have gene expression or protein data to demonstrate the transcriptomc regulation now. Ongoing expression analysis is required to confirm our findings. The last but not the least, six CpG sites might not entirely reflect the situation of the whole gene.

In summary, we found SCNN1A gene-body hypermethylation level was associated with EH, and the methylation level could be altered by
SCNN1A gene methylation in essential hypertension

anti-hypertension drugs, age and gender. Our study was likely to bring new clues to elaborate the pathogenesis of the EH from the view of epigenetics.

Acknowledgements

Our research was supported by Zhejiang Province Social development Research Project (2016C33178), K.C. Wong Magna Fund in Ningbo University, Ningbo Social Development Research Project (2014C50051), Ningbo Medical Science and Technology Plan Project (2013A39), Outstanding (Postgraduate) Dissertation Growth Foundation of Ningbo University (py2014015), the Scientific Research Innovation Foundation of Ningbo University (G16097), and the Scientific Research Innovation Foundation of Ningbo University (G15-070).

Disclosure of conflict of interest

None.

Address correspondence to: Changzheng Dong and Lina Zhang, Department of Preventive Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P.R. China. Tel: +86-574-876-096-04; Fax: +86-574-876-086-38; E-mail: dongchangzheng@nbu.edu.cn (CZD); zhanglin@nbu.edu.cn (LNZ); Linmei Hao, Clinical Laboratory, The Seventh Hospital of Ningbo, Ningbo 315211, Zhejiang, P.R. China. Tel: +86-574-876-096-04; Fax: +86-574-876-086-38; E-mail: hlm3043@21cn.com (LMH)

References

SCNN1A gene methylation in essential hypertension

[37] Han K, Lee J, Km HS, Yang K and Yi JM. DNA methylation of mobile genetic elements in hu-

