Original Article
Expression of the phosphoinositide 3-kinase p110δ isoform and its clinicopathological significance in gastric cancer

Byoungoon Ji¹, Hyoun Wook Lee², Eun Hee Lee², Moon-il Park², Mee-Seon Kim³, Kyungeun Kim³, Mee Sook Roh⁴, Seok-Hyun Kim⁵, Jun Ho Ji⁶, Kwang Min Kim⁶, Mee Sook Roh⁴, Seok-Hyun Kim⁵, Jun Ho Ji⁶, Kwang Min Kim⁶, Jieun Oh⁷, Yong Seok Kim⁷, Seong Hee Choi⁷

¹Department of Gastroenterology, Changwon Jeil General Hospital, Changwon, South Korea; Departments of ²Pathology, ³Medicine, ⁶General Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea; ⁴Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁵Department of Pathology, Dong-A University College of Medicine, Busan, South Korea; ⁶Division of Hematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea

Received June 8 2016; Accepted July 9, 2016; Epub September 1, 2016; Published September 15, 2016

Abstract: Protein p110δ is an isoform of the catalytic subunit of class I phosphoinositide 3-kinases (PI3Ks). PI3Ks are involved in the regulation of cell survival, growth, proliferation, and migration, and have been implicated in the oncogenesis of hematologic malignancies. In this study, we evaluated the expression of p110δ in gastric cancer (GC) and its association with various clinicopathological factors and patient survival. One hundred seventy-four GC cases, included in our previous tissue microarray blocks, were immunohistochemically stained for p110δ. Of the 174 tumors, 158 (90.8%) were positive for p110δ. The rate of p110δ positive GCs was significantly higher in those with diffuse type (P=0.018), larger tumor size (P=0.002), lymphovascular invasion (P=0.012), and advanced pT (P<0.001), pN (P<0.001), and TNM stages (P<0.001). In addition, the p110δ-positive group had poorer overall survival (P=0.002) and recurrence-free survival (P=0.075) than that of the negative group. However, multivariate analysis showed that p110δ was not an independent prognostic factor. Our results suggest that p110δ can play an important role in GC oncogenesis and is a promising therapeutic target in GC. Additional studies on the use of p110δ-specific inhibitors, and the possibility of p110δ immunostaining as a prognostic or predictive biomarker in solid cancers, including GC, are recommended.

Keywords: Gastric cancer, immunohistochemistry, PI3K, p110δ, prognosis

Introduction

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3'-hydroxyl position of the inositol ring of phosphatidylinositol-4, 5-bisphosphate (PIP₂) in response to extracellular stimuli and generate phosphatidylinositol-3, 4, 5-triphosphate (PIP₃). PIP₃ is a critical second messenger, mediating diverse signaling cascades for cell growth, proliferation, and survival [1-3]. PI3Ks are abnormally activated by mutation or amplification of PIK3CA, a gene encoding p110α, a catalytic subunit of PI3K, or by inactivation of phosphatase and tensin homolog (PTEN) protein, a negative regulator of PI3K signaling [4]. Aberrant upregulation of PI3K signaling can promote the oncogenesis of various types of cancers [4-7].

The PI3Ks are grouped into three classes on the basis of their structural features and substrate specificity. Only class I PI3Ks have been linked to the oncogenesis of human cancers [6]. Class I PI3Ks are heterodimeric enzymes comprised of a catalytic subunit and a regulatory subunit. The catalytic subunits of class I PI3Ks are p110α, p110β, p110γ, and p110δ [6]. These four isoforms have non-redundant functions and different expression patterns in different cell types. While p110α and p110β are ubiquitously expressed, p110γ and p110δ are expressed largely in cells of hematopoietic
p110δ expression in gastric cancer

lineage [6, 8]. Thus, p110δ expression has been implicated exclusively in hematologic malignancies [8-10].

Previous studies examining aberrant activation of PI3Ks in gastric cancer (GC) have focused on the amplification or mutation of PIK3CA or loss of function of PTEN [7, 11-14]; however, the expression of PI3K isoform proteins has not been investigated. In particular, there are no available data on p110δ expression in solid tumors, including GC. Recently, we investigated differential expression of PI3K isoforms in GC and found that p110α and p110β expression significantly correlated with various clinicopathological factors and patient survival [15]. The expression of p110δ tended to be higher in tumors with lymph node metastasis or advanced stage than in those without lymph node metastasis or in the early stage, but this was not statistically significant.

Determination of the optimal interpretation method and cut-off value for immunostaining is crucial in immunohistochemical studies because they can affect the results. In this study, we reassessed the association between p110δ expression and clinicopathological factors, including patient survival, in patients with GC by using an interpretation method and cut-off value different from those used in our previous study. Using this approach, we obtained new significant results.

Materials and methods

Patients and tissue samples

This study included 174 patients with GC who underwent radical gastrectomy at Samsung Changwon Hospital, Changwon, South Korea, between January 2002 and December 2005. All pathological slides were reviewed and Lauren classification, location, depth of invasion, regional lymph node metastasis, and lymphovascular invasion were reevaluated. Other clinicopathological data such as age, sex, distant metastasis, and survival data were obtained from medical records. Pathological stage was re-determined according to the 7th edition of the American Joint Committee on Cancer TNM staging system [16]. No patients had undergone neoadjuvant chemotherapy. Follow-up data were included through December 2015 or until death or failure to follow-up. This study was approved by the Institutional Review Board (2015-SCMC-051-00).

Tissue microarrays and immunohistochemistry

Representative areas of tumors were marked on hematoxylin-and-eosin-stained slides and used for tissue microarrays (TMAs). Two tissue cores per tumor, with a diameter of 1 mm, were taken from donor paraffin blocks and put in blank recipient paraffin blocks. TMA blocks were sectioned at 4 μm for immunohistochemical staining using a Ventana Benchmark XT (Roche-Ventana, Tucson, AZ, USA). All sections were deparaffinized and subjected to pretreatment with CC1 (Roche-Ventana) for 30 minutes at 100°C. Sections were washed with reaction buffer, followed by incubation with the primary antibody for 60 minutes at 37°C. The primary antibody was against p110δ (clone A-8, 1:100, Santa Cruz Biotechnology). An UltraView Universal DAB kit (Roche-Ventana) was used to detect primary antibody followed by counterstaining with hematoxylin according to manufacturer’s recommendations (Roche-Ventana). Breast carcinoma was used as the positive control. The negative control used buffer instead of primary antibody.

Immunostained slides were evaluated by two independent pathologists (HWL and EHL) without clinicopathological information. Discrepant cases were discussed on a multihead microscope until agreement was reached. The extent of the staining was expressed as the percentage of tumor cells expressing p110δ by 10% increments. The optimal cutoff of positivity was determined as the percentage producing the greatest prognostic significance. When the cut-off value was 40%, the lowest P-value for overall survival (OS) was obtained. Thus, cases were considered positive if 40% or more of tumor cells expressed p110δ.

Statistical analysis

Statistical analyses were performed with SPSS Ver. 18 (SPSS Inc., Chicago, IL, USA). To evaluate correlations between expression of p110δ and clinicopathological factors, we used Fisher’s exact test for categorical variables or the Mann-Whitney test for ordinal variables. Influences of parameters on overall survival (OS) and recurrence-free survival (RFS) were analyzed by the Kaplan-Meier method and differ-
ences were compared by the log-rank test. Multivariate analyses for OS and RFS used the Cox proportional hazards model. A P-value <0.05 was considered statistically significant.

Results

Clinicopathological characteristics

The patients with GC included in this study consisted of 112 men and 62 women. The median age at diagnosis was 63 years (range 32 to 78 years). Tumor locations included 115 (66.1%) in the antrum, 34 (19.5%) in the body, 5 (2.9%) in the cardia, and 20 (11.5%) in two or more locations. Histologically, 145 tumors (83.3%) were classified as tubular adenocarcinoma, 24 (13.8%) as signet ring cell carcinoma, 3 (1.7%) as mucinous adenocarcinoma, 1 as poorly differentiated neuroendocrine carcinoma, and 1 as undifferentiated carcinoma. By Lauren classification, 91 tumors (52.3%) were classified as intestinal type and 83 (47.7%) as diffuse type. The mean tumor diameter was 4.8 cm (range 0.7 to 17.0 cm). Pathological T stage was T1 (pT1) for 57 tumors (32.8%), pT2 for 27 (15.5%), pT3 for 36 (20.7%), and pT4 for 54 (31.0%). Lymphovascular invasion and nodal involvement were detected in 109 (62.6%) and 104 (59.8%) patients, respectively. Nine (5.2%) had distant metastasis at initial diagnosis. These clinicopathological characteristics are summarized in Table 1.

Correlation between p110δ expression and clinicopathological factors

In most cases, p110δ was moderately to strongly expressed in the cell membrane (Figure 1). The median extent of p110δ expression was 80% (range 0 to 100%). As described above, cases were considered positive when 40% or more of tumor cells expressed p110δ. Of the 174 tumors, 158 (90.8%) were positive. The positive rate of p110δ was significantly higher in GCs with diffuse type (P=0.018), larger tumor size (P=0.002),
p110δ expression in gastric cancer

lymphovascular invasion (P=0.012), advanced pT (P<0.001), pN (P<0.001) and TNM stages (P<0.001). These results are summarized in Table 1.

Survival analysis

The median follow-up period was 122.5 months (range 1 to 168 months). During follow-up, 83 (47.7%) of the 174 patients died and 24 (13.8%) developed recurrent disease. The p110δ-positive group had a worse OS (P=0.002) and RFS (P=0.075) than the negative group (Figure 2). Of the measured clinicopathological factors, cardia location (P=0.017); diffuse type (P=0.038); larger tumor size (P<0.001); higher pT, pN, or TNM stage (P<0.001); and lymphovascular invasion (P=0.002) were significantly associated with shorter OS. In addition, diffuse type (P<0.001); larger tumor size (P<0.001); higher pT, pN, and TNM stages (P<0.001) were associated with shorter RFS.

Multivariate Cox regression analysis including p110δ and clinicopathological factors significantly associated with poor prognosis in univariate analysis showed that only TNM stage was an independent prognostic factor for OS. p110δ expression had an increased risk of worse OS, but the association was not statistically significant (Table 2).

Discussion

GC is the fifth most common cancer worldwide, with almost one million new cases annually, and is the third leading cause of cancer death, with more than 700,000 deaths annually [17]. Although traditional treatments, including curative surgery and perioperative chemotherapy,
have improved the survival rate of patients with resectable GC, many GC cases are either diagnosed at an inoperable advanced stage or are subject to recur after prior curative surgery, and they have a poor prognosis. For patients with advanced or recurrent disease, fluoropyrimidine-based chemotherapy has been widely used and results in prolonged median OS. However, the duration of survival is usually less than 12 months [18]. These limitations of current chemotherapy treatments suggest a need for novel targeting agents that can provide better outcomes for patients with advanced GC. Currently, several molecular targeting agents, including PI3K inhibitors, are undergoing clinical trials for their efficacy in patients with GC [19-22].

There are two types of PI3K inhibitors: pan-PI3K inhibitors, which target all of the class I PI3K isoforms, and isoform-specific PI3K inhibitors. To date, pan-PI3K inhibitors and p110α-specific inhibitors have been evaluated in GC patients [21, 22]. The significant toxicity associated with pan-PI3K or p110α-specific inhibitors may be due to the ubiquitous expression and essential functions of p110α and limits the tolerability of these agents. Such limitations have not been observed for p110δ-specific inhibitors [10, 23]. Therefore, p110δ-specific inhibitors may have more potential for cancer therapy than broad spectrum or p110α-specific inhibitors.

Our study showed that p110δ was highly expressed in GCs and significantly associated with well-established poor prognostic factors, such as diffuse type, larger tumor size, lymphovascular invasion, and advanced pT, pN and TNM stages. The p110δ-positive group had a worse OS and RFS than the negative group. These results suggest that p110δ can play an important role in the oncogenesis of GC and be a promising therapeutic target for GC. To date, isoform-specific inhibition of p110δ has been studied exclusively in hematologic malignancies [8-10]. Based on our results, inhibition of p110δ needs to be applied to solid cancers, including GC.

Interestingly, p110δ was notably expressed in the cellular membrane. Activated receptor tyrosine kinases (RTKs) increase the affinity of p110δ for binding to membranes and PIP₂ [24]. Thus, the localization of p110δ at the membrane reflects the activated status of RTKs and their downstream signaling pathways. This is consistent with our results indicating that the membranous expression of p110δ was associated with tumor growth, invasion, and survival.

Our previous study, with almost the exact same cohort of GC patients, was unable to elucidate a significant correlation between p110δ expression and clinicopathological factors or patient survival, even though GCs with advanced stage or nodal metastasis had a trend toward higher p110δ expression. In that study, we used H-score, calculated by multiplying staining intensity and extent and ranged from 0 to 300, to assess immunostaining results. The median H-score was used as the cutoff value for dividing the subjects into low and high expression groups. Here, we used an alternative interpretation method for immunostaining and the optimal cutoff for positivity, and obtained different results. These differences highlight the importance of using an appropriate interpretation method for immunostaining and the optimal cutoff for positivity, and obtained different results. Further investigations should be performed to determine the most objective and accurate methodology for the assessment of p110δ immunostaining.

To our knowledge, this is the first study to show that p110δ expression significantly correlates with various clinicopathological factors and patient survival in solid cancer. Based on our results, p110δ could have a critical role in the tumorigenesis of solid cancers as well as hema-

| Table 2. Multivariate analysis for overall survival |
|-----------------|-----------------|-----------------|
| Factor | Parameter | Overall survival |
| | | Hazard ratio (95% CI) | P |
| Lauren classification | Diffuse Intestinal | 1.061 (0.676-1.666) | 0.796 |
| Tumor size | ≥4 cm | 1.601 (0.899-2.851) | 0.110 |
| | <4 cm | 0.978 (0.568-1.681) | 0.935 |
| Lymphovascular invasion | Positive | 3.614 (2.058-6.348) | <0.001 |
| | Negative | 5.421 (0.734-40.053) | 0.098 |
| Stage | III-IV | 1.061 (0.676-1.666) | 0.796 |
| | I-II | 1.601 (0.899-2.851) | 0.110 |
| p110δ expression | Positive | 0.978 (0.568-1.681) | 0.935 |
| | Negative | 3.614 (2.058-6.348) | <0.001 |
| | | 5.421 (0.734-40.053) | 0.098 |
p110δ expression in gastric cancer

tologic malignancies. Additionally, isoform-specific inhibition of p110δ could be a novel and attractive therapeutic strategy in cancer treatment as it has fewer side effects than pan-PI3K or p110α-specific inhibition. Therefore, further studies on the use of p110δ-specific inhibitors and the possibility of p110δ immunostaining as a prognostic or predictive biomarker in solid cancers, including GC, are warranted.

Here, we have shown that p110δ was highly expressed in GCs, and showed membranous localization. p110δ expression was significantly associated with poor prognostic factors of GCs, as well as shorter patient survival. However, further studies with a larger number of cases and a standardized interpretation method for p110δ immunostaining are needed to verify our results.

Acknowledgements

This work was supported by a Samsung BioMedical Research Institute grant.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Hyoun Wook Lee, Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, 158, Paryong-ro, Masanhoewon-gu, Changwon 51353, South Korea. Tel: + 82-55-233-6102; Fax: + 82-55-233-5774; E-mail: sudowo@naver.com

References

p110δ expression in gastric cancer

