Original Article
Expression of vascular endothelial growth factor and hypoxia-inducible factor 1α in rat traumatic lung injury

Jianbin Cui1, Liyuan Hu2, Shuli Sun1, Zhonghui Huang1, Haitao Jiao1

1Department of Emergency, 2The Intensive Care Unit, Eighty-Ninth Hospital of PLA, Weifang, Shandong, China

Received September 9, 2016; Accepted November 1, 2016; Epub January 1, 2017; Published January 15, 2017

Abstract: Hypoxia-inducible factor 1α (HIF-1α) is an important transcription factor in mediating oxygen homeostasis that can regulate vascular endothelial growth factor (VEGF) gene transcription. HIF-1α can induce neovascularization in ischemic injury. This research observed HIF-1α and VEGF expression in traumatic lung injury (TLI) to discuss their correlation. Healthy male SD rats at 7-week old were randomly divided into control (A) and traumatic group (B). TLI model was established by multi-function small biological tapping machine. Abbreviated injury scale (AIS), respiration, blood pressure (BP), and heart rate were monitored. Lung tissue was extracted at 6, 24, 48, 72, and 96 hours after injury to observe the pathological morphology. Myeloperoxidase (MPO) was measured by spectrophotometry. Pulmonary microvascular permeability was detected by fluorescence spectrophotometry. VEGF protein was tested by ELISA. HIF-1α protein expression was determined by Western blot. MPO activity, pulmonary microvascular permeability, VEGF, and HIF-1α protein expression were significantly higher at 6, 24, 48, 72, and 96 hours after injury compared with group A (P < 0.05). MPO activity reached peak at 24 h, microvascular permeability reached peak at 6 h, and VEGF and HIF-1α reached peak at 48 h after injury. They gradually decreased after that and got close to pre-injury level. VEGF and HIF-1α protein expression presented positive correlation at different time points (r = 0.759, P < 0.05). HIF-1α and VEGF protein elevated after TLI. HIF-1α may protect cell tolerance to hypoxia and promote injured vascular repair and regeneration through regulating VEGF expression.

Keywords: TLI, HIF-1α, VEGF, correlation

Introduction

Trauma shows a trend of increase year by year with social development. Trauma has become an important factor of death, while the incidence of chest trauma caused by traffic accidents was as high as 40% [1, 2]. Hemorrhagic shock and severe primary injury, including traumatic wet lung and acute pulmonary contusion, are the leading cause of early death after trauma. Important viscera secondary injury and inflammatory response are the important reason of traumatic death in late period [3, 4]. Severe chest trauma is often complicated with traumatic acute lung injury (ALI) and even acute respiratory distress syndrome (ARDS). It was showed that inflammation after trauma aggravated the lung injury. The main mechanism of ALI is lung ischemia-reperfusion, inflammatory reaction, and excessive apoptosis of alveolar epithelial cells [5, 6]. Direct damage after severe chest injury leads to acute alveolar cell death. Lung tissue ischemia hypoxia after trauma causes secondary lung injury, leading to delayed alveolar cell apoptosis. Fibroblasts fill-in causes pulmonary fibrosis after local cell apoptosis. HIF-1α is an important transcription factor to regulate oxygen homeostasis. It can regulate various target genes transcription, such as nitric oxide synthase and VEGF. Lung tissue post-traumatic ischemia hypoxia mediates alveolar epithelial cell apoptosis through HIF-1α. Inflammation aggravates after ALI, further increase HIF-1α expression. HIF-1α overexpression promotes inflammatory factor expression, thus exacerbates ALI inflammation [7, 8]. Lung tissue ischemia hypoxia and inflammatory stimulation during ALI increase vascular permeability, leading to lung edema. The role of HIF-1α in regulating pulmonary vascular permeability is still unclear. HIF-1α in ischemic injury can induce neovascularization. HIF-1α protein overexpression in rat ischemia reperfusion model is related to vascular barrier damage aggravation.
and VEGF protein elevation. HIF-1α may have a dual role in blood vessel barrier protection and damage [9, 10]. Currently, HIF-1α and VEGF are mainly explored in brain and heart ischemic disease research, while their functions in TLI are still lack of investigation. This study established rat TLI model using multi-function small biological tapping machine and observed HIF-1α and VEGF expression to discuss their correlation.

Materials and methods

Experimental animal and grouping

Healthy male SD rats in 7-week old and weighted 220–240 g were provided by Shandong University, animal experiment center (license SYXX-2013-0025) and raised in SPF animal laboratory. Food and drink were in accordance with GB14925-2010 experimental animal standard. The rats were randomly divided into control (n = 30) and traumatic group (n = 75). TLI model was established by multi-function small biological tapping machine.

Rats were used for all experiments, and all procedures were approved by the Animal Ethics Committee of Eighty-ninth hospital of the Chinese people’s liberation army.

Main reagents and instruments

MPO kit was purchased from Nanjing Jiancheng Bioengineering Institute. Chloral hydrate and paraformaldehyde was purchased from Tianjin Kermel chemical reagent co., Ltd. VEGF ELISA kit was purchased from Nanjing Jiancheng Bioengineering Institute. Rabbit anti rat HIF-1α monoclonal antibody was purchased from Boster. Horseradish peroxidase labeling goat anti rabbit secondary antibody was purchased from CST. DAB staining kit was purchased from ZSbio. Multi-function small biological tapping machine (BIM-III) was purchased from field surgery research institute in the third military medical university. Power Lab physiological recorder was purchased from AD Instruments Shanghai Trading Co., Ltd. Quantity One image analysis software was from BIO-RAD. Microplate reader (Multiskan MK3) was purchased from Thermo Fisher.

Animal modeling

The rat was fasted but free water at 8 h before experiment. The rat was anesthetized by 10% chloral hydrate intraperitoneal injection at 45° of left lateral position. The rat was fixed on the plate with right forelimb uplift and abduction. The third and fourth intercostal space in anterior axillary line was selected as the impact point and the skin was prepared. Multi-function small biological tapping machine was used to strike at 350 kpa pressure, with the distance at 18 cm and cylindrical metal slug quality at 22 g and diameter at 1.1 cm. The rats in control received no injury after anesthesia and obtained data at the same time with traumatic group.

General condition observation

The spirit, activity, and appetite, respiratory, heart rate (HR), and blood pressure (BP) of rat were recorded before injury. The rats died within 10 min after injury were recorded as immediate death. The lung tissue and blood gas were extracted from survival rats at 6, 24, 48, 72, and 96 h after injury.

Abbreviated injury scale (AIS)

AIS was used to evaluate lung injury after trauma referring to Organ Injury Scaling and AIS-2005 standard blunt injury assessment method. The classification increased 1 when the lesion was bilateral. AIS was between 1–6. Score 1, chest wall appeared ecchymosis and extravasated blood; lung appeared punctate hemorrhage and bleeding within one lobe. Score 6, multiple ribs fracture leading to flail chest; unilateral lung destruction; massive hemothorax; hilus pulmonis angiorrhaxis.

Hematoxyline-eosin (HE) staining

The rat was killed after blood extraction from aorta abdominalis. Chest injury was observed and the lung tissue gross change was recorded. Contusion area and non-contusion area of right lung and the whole left lung tissues were fixed in paraformaldehyde and sliced at 2 mm. After embedded in paraffin, the section was stained by HE and observed under the microscope.

Lung wet/dry ratio (LW/DR)

Bilateral lung tissue was weighted and then baked at 110°C till constant weight to calculate LW/DR.
HIF-1α regulates VEGF in TLI

MPO activity detection

Lung tissue was extracted at 6, 24, 48, 72, and 96 h after injury and washed by precooled normal saline. Then the tissue was weighted after sipping up the surface moisture. Next, the tissue was prepared as homogenate and centrifuged at 3500 r/min for 10 min to obtain supernatant. Protein was quantified by coomassie brilliant blue. MPO activity was detected at 460 nm according to the manual.

Pulmonary microvascular permeability detection

1% sodium fluorescein at 2 ml/kg was injected through caudal vein at 15 min before each time point. The left atrium was opened and washed by normal saline upon right ventricle pressure perfusion. 50 mg left and right lung tissues were prepared as homogenate to obtain supernatant. Fluorescence spectrophotometry (slit 5 mm, excitation wavelength 437 nm, and emission wavelength 518 nm) was applied to detect the fluorescence intensity and calculate sodium fluorescein content.

ELISA

Lung tissue was homogenized to obtain supernatant. The supernatant was tested by ELISA kit according to the manual, detected at 450 nm, and calculate VEGF concentration upon standard curve.

Western blot

Total protein was extracted from the lung tissue by RIPA and quantified by BCA method. The protein was separated by SDS-PAGE at 75V for 25 min and 110V for the left. After transferred to PVDF membrane at 110V for 45 min, the membrane was blocked by blocking buffer for 1 h. Next, the membrane was incubated in primary antibody at 4°C overnight (HIF-1α 1:100, β-actin 1:200). After washed by TBST for three times, the membrane was further incubated in secondary antibody for 1 h (1:1000). At last, the membrane was treated by ECL chemiluminescence reagent and developed. Quantity One was applied to analyze the protein bind.

Statistical analysis

SPSS 20.0 software was used for data analysis. Measurement data was first tested by normality test. The data in normal distribution was depicted as mean ± standard deviation (x ± S) and compared by one-way ANOVA or LSD test. P < 0.05 was considered as statistical significance.

Results

General condition and AIS score

The rats appeared shortness of breath, oral cyanosis, decreased activity, and depression after injury. Strong precordia ventricular beats and slow frequency could be touched in early period after injury. Some severe cases appeared bloody discharge in mouse and nose, chill, and sighing breathing. The incidence of lung injury in traumatic group was 100%. The mortality rate at 1 h after injury was 38.67% (29/75), while it was 48% (36/75) at 24 h after injury. The rats died in early period were mainly because of hemorrhagic shock, irreversible respiratory arrest, tension pneumothorax, and pulmonary hemorrhage asphyxia, etc. AIS score in rats after injury was 4.16 ± 0.22, and the mortality rate within 24 h was shown in Figure 1. The lesions were mainly on right upper lobe as bleeding consolidation. Whole lung and local hematoma could be observed. Laceration was found on the surface of lung tissue. Ribs indentation was showed. Right middle and lower lobes were involved in severe case (Figure 2).

Respiration, BP, and HR changes after injury

Rat respiration, BP, and HR were continuous monitored. Rat HR and respiration increased after injury and reached peak at 6 h. They gradually reduced and back to the pre-injury level at
HIF-1α regulates VEGF in TLI

24 h. BP immediately elevated and gradually decreased after 1 h. It was close to pre-injury level after 4 h (Figure 3).

PaO$_2$ changes

PaO$_2$ level in rats after injury was significantly lower than control ($P < 0.05$). It reached peak at 6 h and then reduced back to pre-injury level after 48 h (Figure 4).

Rat LW/DR

LW/DR in rat obviously increased after trauma. It reached peak at 6 h and gradually declined back to pre-injury level at 72 h. LW/DR level at 6, 24, and 48 h after injury was markedly higher than the control ($P < 0.05$) (Figure 5).

Lung tissue pathological morphology

HE staining showed that the lung tissue in control exhibited no obvious pathological changes. The cells were in regular arrangement with integrated morphology. No bleeding, edema, or inflammatory cell infiltration was observed in alveolus. The lung tissue in traumatic group exhibited alveolar structure damage, alveolar hemorrhage, alveolar wall thickening, lung tissue edema, and

Figure 2. Gross observation of lung tissue.

Figure 3. Rat respiration, BP, and HR changes after injury. *$P < 0.05$, vs control. Rat HR and respiration increased after injury and reached peak at 6 h. They gradually reduced and back to the pre-injury level at 24 h. BP immediately elevated and gradually decreased after 1 h. It was close to pre-injury level after 4 h.
HIF-1α regulates VEGF in TLI

VEGF and HIF-1α protein expression in lung tissue

VEGF and HIF-1α protein expressions were obviously higher at 6, 24, 48, and 72 h after injury compared with control (P < 0.05). VEGF and HIF-1α reached peak at 48 h after injury and gradually decreased back to pre-injury level at 96 h (Figure 8). VEGF and HIF-1α protein expression presented positive correlation at different time points (r = 0.759, P < 0.05).

Discussion

At present, the related mechanism of traumatic ALI has not been fully elucidated [11, 12]. Most studies applied hemorrhagic shock or endotoxemia/sepsis artery model as animal model, with the disadvantage of cannot fully reflect the characteristics of traumatic ALI [13]. Damage degree should be paid attention in preparation of traumatic ALI model. Too serious primary injury may cause animal died in early period, which cannot observe the secondary injury. Too slight primary injury cannot cause secondary damage. Chest wall deformation and impact velocity in the preparation of traumatic ALI animal model are determined by the driving pressure. Lung tissue damage is associated with driving pressure. This study combined previous simulation results and computer control, thus adopt multi-function biological tapping machine at 350 kpa pressure. It well stimulated the lung trauma, leading the pulmonary contusion mainly in the upper lobe and less involved middle and lower lobes. In addition, since the neighbor organ of right lung tissue is different, different impact site leads to various injury and animal mortality. In order to reduce the impact on the heart damage and circulatory system that may influence the result, this study selected the third and fourth intercostal space in anterior axillary line as the impact point. Impact point shift up may cause axillary artery cleavage and reduce collarbone protection on lung tissue, leading to hemorrhage shock. Impact point shift down will increase the risk of diaphragm and liver rupture, and mainly damage right middle and lower lobes. The incidence of lung injury in traumatic group was 100% and the mortality rate was 48% at 24 h after injury. PaO₂ detection showed hypoxemia. AIS score in rats after injury was 4.16. The lesions were mainly on right upper lobe as bleeding consolidation. Whole lung and local hematoma could be observed. Laceration was found on the surface of lung tissue. Ribs indentation was showed. Right middle and lower lobes were involved in severe case. The lung tissue in traumatic group
HIF-1α regulates VEGF in TLI

Traumatic ALI is related to multiple factors, such as inflammatory response and apoptosis. ALI induced secondary lesions may be associated with post-traumatic lung tissue hypoxic-ischemia [14, 15]. HIF-1α plays an important role in inflammation, hypoxia, vascular permeability, cell apoptosis, and pulmonary fibrosis after ALI [16, 17]. VEGF shows a critical role in maintaining vascular permeability and angio-

Figure 6. Lung tissue pathological morphology (HE staining ×400).

Figure 7. MPO activity and pulmonary microvascular permeability in lung tissue. *P < 0.05, vs control.

exhibited alveolar structure damage, alveolar hemorrhage, alveolar wall thickening, lung tissue edema, and inflammatory cells infiltration. Pulmonary microvascular permeability gradually increased following time extension, suggesting the secondary injury on the basis of primary TLI model, which was in favor of further observation of traumatic ALI mechanism and investigation of corresponding prevention method.
HIF-1α regulates VEGF in TLI

Figure 8. VEGF and HIF-1α protein expression in lung tissue. A: VEGF protein expression. *P < 0.05, vs control. B: HIF-1α protein expression.

HIF-1α regulates VEGF in TLI

which may provide reference to pathogenesis elucidation of ALI/ARDS and lung protection.

Conclusion

HIF-1α and VEGF protein increased after TLI. HIF-1α may protect cell tolerance to hypoxia and promote injured vascular regeneration through regulating VEGF expression.

Acknowledgements

This project supported by the Shandong High School Science & Technology Fund Planning Project (NO. J13LK02).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Haitao Jiao, Department of Emergency, Eighty-Ninth Hospital of The Chinese People’s Liberation Army, 256 North Palace West Street, Weifang 261021, Shandong, China. Tel: +86-536-8439378; Fax: +86-536-8439378; E-mail: haitaojiaozxc@163.com

References

HIF-1α regulates VEGF in TLI

