Original Article
An inbred family with pulmonary alveolar microlithiasis in China: a genome-wide SNP study

Duchao Zhang1*, Kun Xiao1*, Wei Guan1*, Xiaohong Hu2, Peng Yan1, Lixin Xie1

1Department of Pulmonary & Critical Care Medicine Chinese PLA General Hospital, Beijing, China; 2Department of Pediatrics, Hospital Affiliated to Chinese PLA General Hospital (304 Hospital), Beijing, China. *Co-first authors.

Received October 6, 2016; Accepted October 20, 2016; Epub January 1, 2017; Published January 15, 2017

Abstract: Pulmonary alveolar microlithiasis (PAM) is a rare genetic disease that is characterized by the accumulation of calcium phosphate deposits in the alveolar spaces of the lung. The clinical characteristics of the patients with PAM in Mainland China were analyzed, and a high-density single nucleotide polymorphism (SNP) was used to analyze genome-wide of the patients’ genomic DNA. The two patients were sisters of an inbred family whose parents were cousins and presented typical manifestation of recurrent cough, progressive dyspnea. High resolution computed tomography (HRCT) demonstrated the pulmonary was full of high density reflection of intraalveolar microliths especially in double lower lobe, and calcification was found in the pericardial, aorta and pleural. We found homozygous mutation of the SLC34A2 gene, c.910A>T (p.K304X) in exon 8 in two patients, and heterozygous mutation in consanguineous marriage of parents and the other family members. We concluded that a patient with an inbred family history and typical radiological features of high density intra-alveolar microlith, PAM should be highly suspected. The homozygous mutation in SLC34A2 gene, leading to a premature stop codon and a truncated protein, was responsible for PAM in the inbred family.

Keywords: Pedigree research, pulmonary alveolar microlithiasis, whole exon sequencing, single nucleotide polymorphism

Introduction
Pulmonary alveolar microlithiasis (PAM) is a rare chronic lung disease with many microliths of calcium phosphate accumulate in intra-alveolar [1]. Many patients with asymptomatic or only minor recurrent cough have normal pulmonary function or a mild restrictive pattern. Typical chest radiograph reveals sand-like micronodulation of calcified densities bilaterally, mainly in the middle and lower zones [2-4]. Recently, mutation of SLC34A2 gene, which encodes the sodium phosphate co-transporter (NaPi-IIb), is considered to be responsible for PAM [5-7]. However, its mutation symbols in different cases are not investigated yet for its limited data.

In this study we conducted human whole exon sequencing for an inbred family with pulmonary alveolar microlithiasis, screened the related gene mutation, in order to discover disease associated mutations of SLC34A2 gene and provide meaningful references for the study of etiology and diagnosis of rare disease PAM.

Materials and methods

Subjects
Two PAM patients and other members of an inbred family (Figure 1) were recruited for this study. Patients were diagnosed based on characteristic computer tomography (CT) and pathology findings. Written informed consent was obtained from either the patient or from an authorized family member. This study was approved by the Ethics Committee of Chinese People’s Liberation Army General Hospital (approval number, S2015-067-01).

Case one
The proband (V4) was a 52-year-old female. In 2003, the patient was admitted to the hospital complaining of recurrent cough and dyspnea.
She was healthy in the past and denied history of smoking or medication. Her parents are consanguineous, and she has a son and four sisters. One sister (V12) of the patient had the same symptom, neither of the other family members complained of discomfort and their chest CT scans were normal. Physical examination revealed crackle rales in both lung fields, without cyanosis of lips, venous varicose or bulb fingers. Laboratory tests revealed a decreased level of PaO2 (84.3 mmHg). The tumor index and concentration of serum calcium were within the normal range. Spirometry examination showed slight restrictive ventilatory disturbances and moderate decreased diffusing function (vital capacity, 77.2% of predicted, forced expiratory volume in 1 s, 82.5% of predicted, carbon monoxide transfer factor-single breath, 47.0% of predicted). Chest computed tomography (CT) scan showed high density reflection of intraalveolar sand-stones especially in double lower lobe, pericardium and subpleural calcification shadow, and multiple calcified plaque of aortic and coronary artery (Figure 2A). Pathology of lung biopsy showed irregular microlith with lamination and massive calcification by HE stain (Figure 2B). The final diagnosis was PAM based on characteristic CT and pathology findings.

Genome whole exon sequencing

Blood samples were collected from the patients, their parents, sisters, and the children. Genome DNA was extracted using the human blood DNA extraction kit (QIAGEN). The exon regions were enriched by SeqCap EZ human whole exon capture system of NimbleGen (Roche). After database setup, pair-end (double ends) sequencing was conducted following the instruction brochure using Illumina HiSeq2500 sequencing system. Preliminary data analysis and quality control were conducted for sequencing results.
Bioinformatic analysis of SNPs of SLA34A2

Based on the above analyzed results, low quality SNPs were eliminated. The variants published in normal control individuals were also eliminated, including the common variant carried by normal individuals in the public genetic mutation database 1000 genomes, Hapmap and dbSNP. Analysis of related functional pathway regulation and the history of PAM revealed that SLC34A2 gene mutation was probably related to encode the sodium phosphate co-transporter (NaPi-IIb), which is considered to be responsible for PAM.

Results

Data analysis of whole exon sequencing

In order to decrease the impact of error rate from Solexa data on the results, paired reads containing adaptors and low quality segments were eliminated by sliding window approach from raw data obtained from whole exon sequencing. Quality control was conducted using fastQC (Figure 3A). Reads alignment on genome hg19, sequencing depth and exon coverage were analyzed (Figure 3B). After Indel region realignment and base quality score recalibration (BQSR), variants were detected and eliminated by GATK in order to obtain the mutations or candidate genes which might affect protein functions (Figure 4A, 4B).

New SNPs in SLC34A2 gene

After pre-processing and quality control, low quality SNPs were eliminated from the results of whole exon sequencing. The published variants in normal control individuals were also eliminated, including the common variant carried by normal individuals in the public genetic mutation database 1000 genomes, Hapmap and dbSNP (Table 1). Analysis of related functional pathway regulation and the history of PAM revealed that SLC34A2 gene mutation was probably associated the sodium...
phosphate co-transporter (NaPi-IIb), which is considered to be responsible for PAM.

Compared with ClinVar database and Uniprot variants database, there were 3 variants found in SLC34A2 gene, including 1 common variants (recorded in public genetic variant database) and 2 unknown variants newly discovered (Table 1). The influence on gene expression by the variant located at the untranslated region variant 3 prime (UTR3) named rs3733545 was unclear. From the annotation of the function of variants, the mutation from A to T located on 25672438bp of 4 chromosome was identified in exon 8 (c.910A>T) and determined to be nonsense mutation. This nonsense mutation made codon AAA transcribing lysine change into stop codon TAA (p.K304X), which resulted in dysfunction of SLC34A2. Another missense mutation from A to G on its coding amino acid, Aspartic acid to Glycine (Chr4: 25678199, c.1901A>G (p.D252G)), was not recorded in ClinVar database.

**Distribution of SLC34A2 SNPs in the family members**

The target region of mutation was sequenced in order to demonstrate the presence of this mutation in family members and whether
Pulmonary alveolar microlithiasis in China

this mutation affected expression of NaPi-IIb protein. Sequencing of exon 8 on SLC34A2 gene revealed that the wild type allele was A, while the was T found in patient V4 and V12, mother IV3, father IV4, the fourth sister V10, the son of patient V4 (V11), aunt IV5 and uncle IV6, located on Chr4: 25678199, c.1901A>G (p.D252G) was fund in all members with homozygous mutation. The homozygous mutation located at UTR3 was also fund in all members, except the uncle IV6 (Table 2).

Discussion

PAM is a rare idiopathic disease characterized by microliths of calcium phosphate accumulate in alveoli. The etiology and pathogenesis of this disease is still unknown and many researches has supposed that PAM is an autosomal recessive hereditary disease as a result of the presence of familial cases [8, 9].

The disease affects both sexes and the cases of PAM are described at all ages, from newborns to an 84-year-old female [4, 11, 12]. More than half of the patients are asymptomatic, and complained symptoms such as dyspnoea, cough or chest pain in chronic progressive course. Lung function showed impairment of ventilation function and diffusing function [4, 13]. Microscopic (biopsy or bronchoalveolar lavage) examination revealed characteristic microliths into the alveoli. Characteristic sand-like appearance of Chest x-rays and computed tomography are sufficient to diagnose especially in cases with other affected family members [14, 15]. Although develops slowly, the disease will progress into pulmonary fibrosis, respiratory failure and cor pulmonale [4]. To date, there is no effective therapy except for lung transplantation [16].

In this study, the two patients were sisters of an inbred family whose parents were cousins and presented typical manifestation of recurrent

Figure 4. A. Distribution of different types of SNPs in coding region and genomic region. B. Distribution of different types of Indels in coding region and genomic region. Note: UTR3, untranslated region variant 3 prime; UTR5, untranslated region variant 5 prime.
cough, progressive dyspnea. HRCT demonstrated the pulmonary was full of high density reflection of intraalveolar microliths especially in double lower lobe. Pulmonary function showed impairment of small airway and dispersion function. Pathology of lung biopsy showed irregular microlith with lamination and massive calcification by HE stain. The diagnosis of PAM was therefore established based on the symptoms, thorax imaging and the biopsy.

It has been confirmed that more than one third of cases are familial, which suggested genetic basis might be the etiology of PAM [4]. The mutation of SLC34A2 gene, which encodes the NaPi-IIb, is considered to be responsible for PAM. SLC34A2 gene has 13 exons, and exon 1, 2, 3, 4, 6, 7, 8, 11, 12 and 13 were involved mainly in this disease [4, 7, 17-21]. Chinese patients usually have mutation in exon8 [6-8]. In this study, we found 3 SNPs of ALC34A2 in an inbred PAM patient’s family, using whole exon sequencing technique combined with bioinformatic analysis. One of the three variants located at UTR3, which impact on gene expression could not be decided. Through the annotation of function of the mutation, the mutation from A to T located on 25672438bp of 4 chromosome was identified in exon 8 (c.910A>T (p.K304X)) and determined to be nonsense mutation. This nonsense mutation made codon AAA transcribing lysine change into stop codon TAA (p.K304X), which resulted in defects of SLC34A2 function and led to PAM in the inbred family. Our result was consistent with the cases reported in Chinese PAM family, and exon8 might be the screen target for Chinese PAM patients.

Acknowledgements

We express our gratitude to the family for their participation in the study. This work was supported by Projects fostering of Capital Public Health Commission of Beijing.

Table 1. 3 SNPs on SLC34A2 gene

<table>
<thead>
<tr>
<th>Chr</th>
<th>Start</th>
<th>End</th>
<th>Gene region</th>
<th>Ref</th>
<th>Alt</th>
<th>AA change</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr4</td>
<td>25672438</td>
<td>25672438</td>
<td>Exon 8</td>
<td>A</td>
<td>T</td>
<td>c.910A&gt;T (p.K304X)</td>
<td>Stopgain</td>
</tr>
<tr>
<td>Chr4</td>
<td>25678396</td>
<td>25678396</td>
<td>UTR3</td>
<td>G</td>
<td>T</td>
<td>–</td>
<td>Unknown</td>
</tr>
<tr>
<td>Chr4</td>
<td>25678199</td>
<td>25678199</td>
<td>Exon 13</td>
<td>A</td>
<td>G</td>
<td>c.1901A&gt;G (p.D634G)</td>
<td>Nonsynonymous</td>
</tr>
</tbody>
</table>

Note: UTR3, untranslated region variant 3 prime.

Table 2. Distribution and Gene type of SLC34A2 SNPs in the Family Members

<table>
<thead>
<tr>
<th>Location</th>
<th>IV3</th>
<th>IV4</th>
<th>IV5</th>
<th>IV6</th>
<th>V4</th>
<th>V6</th>
<th>V10</th>
<th>V12</th>
<th>VI1</th>
<th>VI3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr4: 25672438</td>
<td>het</td>
<td>het</td>
<td>het</td>
<td>het</td>
<td>hom</td>
<td>-</td>
<td>-</td>
<td>hom</td>
<td>hom</td>
<td>-</td>
</tr>
<tr>
<td>Chr4: 25678396</td>
<td>hom</td>
</tr>
<tr>
<td>Chr4: 25678199</td>
<td>hom</td>
</tr>
</tbody>
</table>
Pulmonary alveolar microlithiasis in China

Health by the Science and Technology Commission of Beijing (No. Z11110706730000).

Disclosure of conflict of interest
None.

Address correspondence to: Lixin Xie, Department of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China. Tel: 86-10-55499128; Fax: 86-10-55499128; E-mail: xielx301@126.com

References

[1] Santos MK. Diagnosis of pulmonary alveolar microlithiasis, Radiol Bras 2015; 48: IX-X.