Distribution of phosphorylated cyclic AMP response element binding protein (p-CREB-1) in rat retina

Jianfa Huang*, Pei Chen*, Jingzhi Yu, Lijun Xu, Ying Yang, Nandan Wu, Mingjun Tan, Jian Ge, Keming Yu, Jing Zhuang

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. *Equal contributors.

Received October 11, 2016; Accepted October 25, 2016; Epub February 1, 2017; Published February 15, 2017

Abstract: Purpose: The phosphorylation of cyclic AMP (cAMP) response element binding protein (CREB) is essential to the physiology of neuron development. In the present study, we sought to determine the expression profile and specific cell distribution of p-CREB-1 in the rat retina. Methods: Double immunofluorescence staining was employed to determine the developmental expression pattern and specific distribution of p-CREB-1 in adult rat retina. Results: Our data implicate a developmental expression pattern of both CREB-1 and p-CREB-1 in rat retina. The p-CREB-1 was prominently expressed in retinal neurons and rarely expressed in retinal glial cells, as evidenced by immunofluorescence assay. Conclusion: The developmental phosphorylation pattern and distinct expression localization of p-CREB-1 in rat retina suggest a physiological role for p-CREB-1 in the retinal development.

Keywords: p-CREB-1, retina neurocytes, retina development

Introduction

CREB-1, a pleiotropic leucine zipper transcription factor, mediates important mechanisms governing several physiological functions of the central nervous system ranging from development to plasticity and disease [1, 2]. The canonical pathway that leads to the activation of CREB-1 by phosphorylation of the Ser133 residue [3] has been implicated in the regulation of proliferation, differentiation, and neurogenesis in the developing neuron system [4, 5], and mediating synaptic plasticity, long-term memory formation and consolidation in the adult brain [6]. Its activity is triggered by increased intracellular levels of cAMP and Ca\(^{2+}\) influx in response to neurotransmitters, hormone stimulation and neuronal activity [7, 8]. Triggering this pathway subsequently initiates the transcription of multiple target genes [9]. During mammalian development neuronal activity, and possibly Ca\(^{2+}\) influx, is critical to the formation of synaptic connections, suggesting that phosphorylated CREB-1 (p-CREB-1) is involved in this physiological process [7, 10].

In embryonic cortical neurons, neuronal activity induces transcription of neuro-protective proteins such as Bcl-2 and brain-derived neurotrophic factor (BDNF) by a p-CREB-1-dependent mechanism [11]. In the adult hippocampus, CREB-1 phosphorylation occurs in response to a diverse array of stimuli and has been shown to enhance cell survival and neurogenesis [12]. Moreover, several lines of evidence suggest that p-CREB-1 integrates contextual information, regulates the repertoire of retinal precursor cells and acts as a neuronal survival modulator during retinal development [13, 14]. In vivo evidence indicates that decreased phosphorylation levels of CREB-1 are associated with retinal degeneration [15, 16]. Yet the physiological role of p-CREB-1 in the regulation of retina development remains unclear.

The vertebrate retina, a part of the central nervous system, contains seven major cell types and is still undergoing sustained development within a period of time after birth. During the early postnatal period, extracellular stimuli, such as neurotransmitters, trigger long-term phenotypic changes in multi-potent retinal progenitors, including cell differentiation and synaptic formation, to generate different retinal cell types and form a functional retina [17].
Several intracellular signaling cascades that phosphorylated nuclear transcriptional factors are involved in these sophisticated processes [7, 14]. Identifying in which cells the transcriptional factors have been phosphorylated might facilitate the understanding of its biological roles. However, the distribution of these transcriptional factors such as p-CREB-1 has not been reported.

Given the importance of p-CREB-1 in neuron development, it is likely that this transcription factor is also involved in the regulation of retina development. Therefore, the expression profile and cell location of p-CREB-1 was immunohistochemically evaluated in rat retina under normal conditions by using double-staining assay. The new insight of this study might shed light on the potential involvement of p-CREB-1 in retinal development.

Methods

Animals

All experiences involving animals strictly adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and the procedure was approved by the Institutional Animal Care and Use Committee of Zhongshan Ophthalmic Center (Permit Number: SYXK (YUE) 2010-0058). The rats were housed in Ophthalmic Animal Laboratory of Zhongshan Ophthalmic Center, at Sun Yat-sen University, in an air-conditioned room with an ambient temperature of 16-26°C, a relative humidity of 40-70% and a 12-hour light-dark cycle. Food and water were available ad libitum and animal health was monitored by the animal care staff and veterinarian. The Sprague-Dawley (SD) rats were sacrificed by an intra-peritoneal injection of chloral hydrate (P3761, 60 mg/kg) (Sigma, St. Louis, MO) before we harvested the eyes.

Tissue preparation

The rats were anesthetized with chloral hydrate (5 mg/ml) and perfused with physiological saline and then 4% paraformaldehyde. Afterwards, the eyes were harvested and fixed in 4% paraformaldehyde overnight. Then, the eyes were dehydrated with graded sucrose solution and embedded in optimal cutting temperature (OCT) compound (Tissue-Tek, California, USA). Subsequently, the transverse sections of the rats’ eyes were cut by using a microtome (Thermo Electron Corporation, Cheshire, UK), and mounted onto glass slide (CITOTEST, Jiangsu, CHINA), at a section thickness of 10 μm, and stored at -20°C until processed.

Immunofluorescence assay

Immunofluorescence was used to determine the specific location of p-CREB-1 in the mature retina. For immunofluorescence staining, the slides with tissue sections were washed with phosphate buffer saline (PBS) and permeabilized by 0.5% Triton X-100 (Sigma, St Louis, MO, USA) for 10 min, then blocked with 10% normal goat serum (Boster, Wuhan, China) for 30 min. The sections were incubated with primary antibodies (Table 1) in a humidified chamber at 4°C overnight. After being washed with PBS for 15 min the secondary antibody (CST, Danvers, MA) was added to the sections at room tem-
temperature as required, and the nuclei were stained with DAPI. Sections were rinsed with water and mounted with Fluoromount G (eBio-science, San Diego, USA). Photomicrographs were taken by using the LSM 5 Pascal confocal laser scanning microscope (Zeiss, Oberkochen, Germany). Images of the retinal sections were collected at 400× and 800× magnification.

Figure 1. Developmental expression profile of CREB-1 and p-CREB-1 in rat retina. A. The expression of CREB-1 (red) and p-CREB-1 (green) in the rat retina were observed at postnatal day 1, day 5, day 10, day 21 and 1 month by using immunofluorescence staining. B. Confocal immunofluorescent images at higher-magnification of CREB-1 (red) and p-CREB-1 (green) staining in adult rat retina. Nuclei were stained with DAPI (blue). Arrows indicate examples of co-localization. Ganglion cell layer (GCL), inner nuclear layer (INL), inner plexiform layer (IPL), outer plexiform layer (OPL), and outer nuclear layer (ONL).
Results

The developmental expression profile of CREB-1 and p-CREB-1 in rat retina

In the central nervous system, almost every neuronal and glial cell appears to exhibit CREB-1 expression [18]. The activity of CREB-1 is triggered by signaling cascades that result in phosphorylation of CREB-1 in differentiated cells [19, 20]. Here, we analyzed the developmental expression profile of CREB-1 and p-CREB-1 in the rat retina at different time points by using a double-immunochemical assay. The p-CREB-1 antibody recognizes the peptide sequence containing the phosphorylated Ser133. Representative microscopic pictures demonstrated that both the CREB-1 and p-CREB-1 are expressed in the nuclei of each cell. No staining was observed in the sense controls (data not shown).

Varying intensities of CREB-1 and p-CREB-1 staining were observed in the retina at different developmental stages (Figure 1). As shown in Figure 1A, at postnatal day 1, CREB-1 was constitutively distributed in the all layers of the retina; however, with ongoing retina development its expression was down-regulated in the outer nuclear layer (ONL) and gradually restricted to only the ganglion cell layer (GCL) and inner nuclear layer (INL). In contrast, p-CREB-1 was almost exclusively expressed in the GCL of postnatal day 1 rats and profoundly up-regulated in the GCL and INL of the mature rat retina.

Figure 2. Immunolocalization of p-CREB-1 in the adult rat retina neurons. A. p-CREB-1 immunoreactivity in the rat retina co-localized with Map-2 positive cell. B. Confocal immunofluorescent images at higher-magnification of p-CREB-1 (green) and Map-2 (red) staining in adult rat retina. Nuclei were stained with DAPI (blue). Arrows indicate examples of co-localization. C. P-CREB-1 (green) immunoreactivity in the rat retina co-localized with THY1.1 (red) positive cell. D. Confocal immunofluorescent images at higher-magnification of p-CREB-1 (green) and THY1.1 (red) staining in adult rat retina. Nuclei were stained with DAPI (blue). Arrows indicate examples of co-localization. Ganglion cell layer (GCL), inner nuclear layer (INL), inner plexiform layer (IPL), outer plexiform layer (OPL), and outer nuclear layer (ONL).
Interestingly, peak expression of p-CREB-1 in the INL was observed at postnatal day 5 and slightly decreased with age (Figure 1A). These temporal and spatial developmental expression patterns of CREB-1 and p-CREB-1 are in accordance with the proposed function as a regulator for retina development signals. Moreover, higher-magnification images of adult rat retina demonstrated that (Figure 1B), about half of the retinal cells in the GCL and INL that expressed CREB-1 were immuno positive for p-CREB-1 regardless of its phosphorylation state. This expression pattern is similar to that observed in cortex [18]. Together, these lines of evidence indicate that the phosphorylation of CREB-1 might contribute to the differentiation of retina neurocytes.

Immunolocalization of p-CREB-1 in the adult rat retina neurons

The vertebrate retina consists of seven major neuron cell types. To determine the exact distribution of p-CREB-1 in retinal cells, double immunofluorescence staining was performed with specific markers of major neuronal phenotypes in the fully developed postnatal one-month rat retina. Given the lack of p-CREB-1 distribution in the ONL layer, the cellular analysis was restricted to the GCL and INL neurocytes. The intensive staining of p-CREB-1 in the GCL suggested positive phosphorylation of CREB-1 in retinal ganglion cells (RGCs). The retinal neurons were labeled with microtubule-associated protein-2 (MAP-2) or THY1.1, the specific cellular makers for neurons and retinal ganglion cells, respectively. As shown in Figure 2A and 2B, the MAP-2 stained neuronal axons and cell bodies were present in the GCL and IPL of retina. Thy1.1 expression was distributed specifically in ganglion cells (Figure 2C and 2D), which were strongly expressed in the membrane and cytoplasm of the cells in the GCL and IPL. It was apparent that the cellular staining of p-CREB-1 co-localized with both MAP-2 and Thy1.1.

Anti-protein kinase C-α (PKC-α) was used to label rod ON-bipolar cells and a subpopulation of amacrine cells [21]. As shown in Figure 3A and 3B, the PKC-α staining was distributed in cytoplasm of the cells in the inner and outer parts of the INL, and the synaptic terminals of the IPL. No clear co-localization was detected between PKC-α and p-CREB-1. Horizontal cells localized in the outer parts of the INL, exhibiting dense plexus formed calbindin labelling, were not p-CREB-1 immunoreactive (Figure 4A and 4B). However, calretinin-positive amacrine cells presented in the inner the INL and GCL, revealed only a few p-CREB-1 stained cells (Figure 4C and 4D). Taken together, these observations demonstrate that p-CREB-1 was promi-
Distribution of p-CREB-1 in rat retina

Immunolocalization of p-CREB-1 in the adult rat retina glial cells

To assess the expression of p-CREB-1 in retinal glial cells, double labelling experiments were performed for p-CREB-1 with glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS), markers for astrocytes and Muller cells, respectively. In one-month old rat retina, GFAP was expressed in the outer parts of the GCL, and no co-localization between GFAP and p-CREB-1 were observed (Figure 5A and 5B). Additionally, the Muller cells, which were labelled using an antibody against GS that span the entire neuro-retina, were not p-CREB-1 immunoreactive (Figure 5C and 5D). This evidence indicates that p-CREB-1 was rarely expressed in the rat retinal glial cells.

Discussion

In the present study, we first demonstrated the developmental phosphorylation of CREB-1 in rat retina; this suggests a regulator role for p-CREB-1 in retinal development and cell classes. Moreover, in adult rat retina, p-CREB-1 was prominently expressed in the retinal neurons while rarely expressed in the retinal glial cells.

The phosphorylation of CREB-1 plays a vital role at a central converging point of pathways mediating the developmental regulated processes in neurons, including cell differentiation, synaptic connections and neurogenesis [1, 2, 22]. Here, we demonstrated that CREB-1 was markedly expressed and extensively dis-
Distribution of p-CREB-1 in rat retina

Figure 5. Immunolocalization of p-CREB-1 in the adult rat retina glial cells. A. No co-localization between p-CREB-1 (green) and GFAP (red) were observed in rat retina. B. Confocal immunofluorescent images at higher-magnification of p-CREB-1 (green) and GFAP (red) staining in adult rat retina. Nuclei were stained with DAPI (blue). C. No co-localization between p-CREB-1 (green) and GS (red) were observed in rat retina. D. Confocal immunofluorescent images at higher-magnification of p-CREB-1 (green) and GS (red) staining in adult rat retina. Nuclei were stained with DAPI (blue). Ganglion cell layer (GCL), inner nuclear layer (INL), inner plexiform layer (IPL), outer plexiform layer (OPL), and outer nuclear layer (ONL).

tributed in all layers of the retinathat are still undergoing development in postnatal day one rats, and developmentally down-regulated in the ONL as the rats aged. Conversely, p-CREB-1 expression was predominated in the GCL in the postnatal dayone rat retina, while strong immunoactiveactivity of p-CREB-1 was observed in the GCL and INL of the one-month old rat retina. This observation is consistent with previously reported patterns of p-CREB-1 staining in adult retina of mouse, dog and cat [23, 24]. As in other parts of the nervous system, various physiological stimuli or cellular stress, such as peptide hormones, growth factors and light exposure [25-27], could induce the phosphorylation of CREB-1 in retinal neurons. The phosphorylation of CREB-1 mediates the transcription of neurotrophic factors and triggers intracellular signaling pathways, there by modulating the proliferation and dictating the differentiation of neurocytes. The developmental phosphorylation of CREB-1 in the retina observed in the present study indicates that CREB-1 might be involved in the physiological process of the development of retinal cell classes and architecture as well as maintaining neuronal properties.

To identify the differentiation processes of cells that p-CREB-1 has participated in, we analyzed the expression distribution of p-CREB-1 in the adult rat retina. Based on the staining pattern with p-CREB-1 antibody and retinal cell markers antibody, our data indicates that, although every neuronal and glial cell throughout all retinal layers appears to exhibit CREB-1 immunoreactivity, p-CREB-1 was prominently expressed in the retinal neurons but rarely expressed in
Distribution of p-CREB-1 in rat retina

the retinal glial cells. These observations are consistent with previous reports demonstrating that p-CREB-1 is predominantly expressed in post-mitotic cells [18-20, 28]. Persistent and strong activation of CREB-1 phosphorylation is associated with neuronal survival; it has been suggested to provide neuroprotective signals in times of cellular stress [29]. A close relationship between CREB-1 phosphorylation and neuronal survival has been reported [30, 31]. Drug-induced phosphorylation of CREB-1 promotes proliferation and morphological maturation of neurons [32, 33]. Application of lithium, a well-known neuroprotective agent, induces marked enhancement of CREB-1 phosphorylation in the cortex [33]. In line with these studies, our results suggest strong involvement of p-CREB-1 in the development of retinal neurocytes. Moreover, in adult rat retina, phosphorylated-CREB-1 expression in CREB-1 immunopositive cells was observed. Such moderate activation of CREB-1 may be necessary for the basal maintenance of signal transduction to ensure neuronal integrity [2, 4]. Additionally, given that there is strong phosphorylation of CREB-1 in the retinal neurons, not glial cells, in the GCL and INL during development; it is likely that CREB-1 controls the neurogenic transcriptional programs that regulate the repertoire of retinal precursor cells. Neuron cell proliferation and differentiation are sophisticated processes, coordinated by several extrinsic factors and neurotrophins. Although CREB-1 phosphorylation mediates the transcription signaling of neurotrophin factors, considerable evidence suggests that in developing neurocytes, neurotrophin factors could enhance the phosphorylation of CREB-1 [26]. Thus, populations of retina cells expressing p-CREB-1 could be either positively or negatively selected in retinal development. However, the mechanism underlying the involvement of p-CREB-1 in retinal neurocytes is likely that CREB-1 mediates the development processes of the retina. Collectively, this study not only gives a new insight into the regulation of p-CREB-1 in retinal development, but it might also offer a therapeutic target to currently untreatable retinal diseases.

Acknowledgements

All the studies were funded by the grants from the National Natural Science Foundation (Project: 81070732, 81470626).

Disclosure of conflict of interest

None.

Address correspondence to: Jing Zhuang, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou 510060, Guangdong, P. R. China.
Tel: +86-20-87330290; Fax: +86-20-87330341; E-mail: zhuangj@mail.sysu.edu.cn

References

