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Abstract: The unmet clinical needs in population with hepatocellular carcinoma (HCC) makes it urgent to construct 
more patient-derived preclinical HCC models, including patient-derived xenografts (PDXs) and patient-derived cell 
lines (PDCs), to improve the therapy for HCC. The observation that dramatic inter-tumor heterogeneity exists in 
HCC patients and the development of precision cancer care also needs more preclinical HCC models with distinct 
genomic signatures to test targeted compounds in vitro. In present work, 6 novel Chinese PDX-derived HCC cell 
lines were established. They displayed significant difference on cell morphology, growth rate, chromosomal number, 
mRNA levels of some cancer-related genes, and the response to 12 antitumor agents. Among which, CNHCC0106 
grows at the fastest rate, harbors the highest expression of BCL2, RAF1, and MET, and responds well to everolimus 
but not to sorafenib, which may serve as a useful model for new mechanism of action exploration of some anti-
cancer drugs. Our work enlarges the number of HCC cell lines that can be used for further exploring the molecular 
mechanism of HCC and anticancer drug screening.
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Introduction

Hepatocellular carcinoma (HCC) is the leading 
cause of cancer deaths with massive patient 
population in China (466.1 and 422.1 thou-
sands of people are estimated to occur and be 
dead with this disease, respectively, in 2015) 
and increasing incidence and mortality in We- 
stern countries [1, 2]. The survival rate for HCC 
patients is dismal: The 1- and 5-year relative 
survival rates for HCC patients are 43% and 
17%, respectively, in the United States (Ame- 
rican Cancer Society. Caner Facts & Figures 
2015.); while in the United Kingdom, the 1-year 
relative survival rates for HCC patients is just 
20% [3]. The not-well-understood molecular pa- 
thogenesis of HCC, the lack of good diagnostic 
markers and treatment strategies, and clinical 
heterogeneity makes management of HCC a 
great challenge [4-6]. 

With the advances in sequencing technologies 
in the past decade, the landscape of genomic 
alterations in HCC patients has been uncov-

ered. Recurrent mutations and copy number 
variations are occurred in HCC patients in the 
following pathways: Telomere stability, p53/cell 
cycle control, Wnt/β-catenin signaling, Chro- 
matin remodeling, Ras/PI3K/mTOR pathway, 
Oxidative stress, FGF signaling, VEGF signal- 
ing, JAK/STAT signaling, PDGFR signaling, and 
IGF signaling [6-10]. However, most common 
mutations are undruggable, such as TERT pro-
moter, TP53 and CTNNB1. Furthermore, up to 
seven large, randomized phase III clinical trials 
investigating other molecular therapies in HCC 
have failed to improve on the results observed 
with sorafenib, the only targeted agent FDA-
approved for the treatment of advanced HCC 
patients. Potential reasons for this include 
issues with trial design, a lack of predictive bio-
markers of response, and intertumour hetero-
geneity [6, 11], which has been described by 
several previous studies [10, 12].

Cancer cell lines and patient-derived xenograft 
(PDX) models have been widely used in preclini-
cal studies and regarded as essential tools for 
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oncology drug development and prediction of 
the cancer therapy [13]. In 2012, two research 
groups carried out next-generation sequenc- 
ing and drug screen for large-scale cancer cell 
lines [14, 15]. The genomic signatures, includ-
ing gene mutation, copy number variation, chro-
mosome translocation, and gene expression,  
in these cell lines were correlated to their 
response to antitumor agents. By linking drug 
activity to the functional complexity of cancer 
genomes, systematic pharmacogenomic profil-
ing in cancer cell lines provides a powerful  
biomarker discovery platform to guide rational 
cancer therapeutic strategies [15]. After then, 
increasing studies used cell line panel of some 
type of cancer or cell lines harboring some 
given genomic variation (usually more than 40 
cell lines, including commercial and primary 
cell lines) to uncover biomarkers for some anti-
cancer agents [16-18]. However, there are only 
28 liver cancer cell lines in Cancer Cell Line 
Encyclopedia (CCLE), most of them are derived 
from Western population. Regarding the mas-
sive population of HCC patients in China and 
the high intertumour heterogeneity of HCC, it is 
of great importance to construct more Chinese 
patient-derived HCC cell lines to boost the drug 
therapy for HCC. In the present study, 6 novel 
HCC cell lines were established from PDX mod-
els. The cell morphology, growth rate, chromo-
somal number, mRNA levels of some cancer-
related genes, and response to 12 antitumor 
agents of these cell lines were investigated.

Materials and methods

Patients and sample collection

Tissue samples were collected from 15 patients 
diagnosed with HCC who underwent curative 
resection without any adjuvant therapy before 
for the purposes of the study (Table 1). All HCC 
tumor tissues used for PDX model establish-
ment were obtained from Huashan Hospital  
in accordance with protocols approved by the 
Institutional Ethics Committee of Huashan Hos- 
pital and with written informed consent from 
each patient.

Generation of PDX models

6-8 week-old female SCID mice (Beijing Vital 
River, China) were used for human HCC frag-
ments implantation. Mice were maintained 
under specific-pathogen-free (SPF) conditions. 
The fresh tumor tissue specimens were rinsed 
twice with Hank’s balanced salt solution (HBSS) 
containing antibiotic and transported on ice.  
As described previously [19], tumor tissues 
were cut into 3×3×3 mm pieces and implanted 
subcutaneously into the flank of SCID mice. 
After outgrowth of patient tumor and reaching  
a size of approximately 500 mm3, PDX tumors 
were harvested and passaged, and/or used to 
establish in vitro cultures. Tumors were typical-
ly retransplanted three times (i.e. up to p4).

Establishment of HCC cell lines from PDX mod-
els

Harvested xenografts were minced, placed in 
5% FBS containing DMEM/F-12 1:1 with colla-
genase IV (0.5 mg/ml, Sigma) in a tube and 
incubated at 37°C for 60 min with vortexing 
every 10 min. The dissociated suspension was 
passed through a 70 μm strainer to obtain  
single cells and washed with culture medium. 
Cell aggregates retained on top of the filter 

Table 1. Information of patients
Cell line Age/sex Clinical Pathological diagnosis Site HBsAg HCV HIV
CNHCC0101 49/M Poorly to moderately differentiated HCC Right lobe + - -
CNHCC0104 58/M Poorly differentiated HCC Right lobe + - -
CNHCC0106 64/M Poorly differentiated HCC Left lobe - - -
CNHCC0109 70/M Poorly differentiated HCC Middle lobe + - -
CNHCC0111 61/M Poorly to moderately differentiated HCC Right lobe + - -
CNHCC0112 66/F Poorly differentiated HCC Left lobe + - -

Table 2. Quantification of chromosome aber-
rations
Cell line Chromosome quantity
CNHCC0101 42 ± 3
CNHCC0104 75 ± 6
CNHCC0106 50 ± 5
CNHCC0109 57 ± 8
CNHCC0111 58 ± 7
CNHCC0112 88 ± 14
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were put in a separate dish. Isolated cells  
and aggregates were grown in DMEM/F-12 1:1 
containing 5% FBS. Purity of the epithelial  
culture was assessed by cell morphology. For 
selective trypsinization, cultures were washed 
twice with PBS, followed by 2-3 min incuba- 
tion with 0.05% Trypsin/0.02% EDTA solution  
at 37°C. Detached cells were gently washed 
away with 5% serum containing medium and 
selective removal of fibroblast was repeated 
once cells reached confluence. Cells were  
subcultured at 70-80% confluence and used 
for further experiments after at least 30-50 
passages.

Growth kinetics in vitro

After establishment, growth kinetics of the 
tumor cells was obtained by seeding the cells 
at the density of 10000 cells/well into 12-well 
plate. The number of cells in each well was 
counted at a 24 h interval and the average 
value of duplicates was used to calculate the 
doubling time and plot their growth curve. The 
doubling times of the 6 HCC cell lines were cal-
culated with the aid of GraphPad Prism 5.0 
software by exponential growth equation.

Chromosome analysis

The chromosome specimens of the established 
HCC cell lines were valued as previously de- 
scribed [20]. Cells at logarithmic phase were 
harvested and suspended in 0.075 mol/L KCl 
hypotonic solution and then fixed in fix solution 
(methanol: glacial acetic acid = 3:1). Chromo- 
some specimens were stained with Giemsa 
and Chromosome numbers of M phase cells 
were counted under a microscope (Olympus 
IX51). The chromosome frequency of each cell 
line was analyzed by Origin software.

forward 5’-ACTCACCAACCTCTTGTCCT-3’, rever- 
se 5’-GACAAACGGGCAACATACCT-3’; X: forward 
5’-CCGATCCATACTGCGGAAC-3’, reverse 5’-GC- 
AGAGGTGAAGCGAAGTGCA-3’. The PCR prod-
ucts were electrophoresis on 1.5% agarose. 
The length of PCR product should be 441,  
577, 130, and 340 bp for C, P, S, and X gene, 
respectively.

Quantitative real-time PCR (qPCR)

Total RNA from the 6 HCC cell lines was respec-
tively isolated with Trizol (Invitrogen, Life Tech- 
nologies) and synthesized to cDNA for RT-PCR, 
using PrimeScript RT reagent kit (Takara, RR- 
074A) and Random Primer (9 mer). The primers 
used for qPCR validation were list in Table 3. 
Real-time qPCR was performed on CFX-96  
(Bio-lab), with endogenous control hActb. Gene 
expression was calculated relative to expres-
sion of hActb endogenous control and adjusted 
relative to expression in CNHCC0101 cells.

In vitro anti-proliferation assay

The cell populations were further characterized 
by analyzing their response to 12 compounds 
purchased from MedChemExpress (China), in- 
cluding 6 chemotherapeutic agents (Cisplatin, 
Docetaxel, Doxorubicin, Gemcitabine, Oxalipl- 
atin, and Vinblastine) and 6 targeted com-
pounds (Sorafenib, Everolimus, MK-2206, Picti- 
lisib, Ruxolitinib, and Tideglusib). Cells (500-
1000/each well) were grown in 100 μl of DM- 
EM/F-12 1:1 medium containing serum per  
well in a 96-well plate. After 24 h, the cells were 
treated with each of the 12 compounds or a 
solvent control with 0.5% of the final DMSO 
concentration in medium. Every treatment was 
triplicate in the same experiment. Then 20 μl of 
MTS (CellTiter 96 AQueous One Solution Rea- 
gent; Promega) was added to each well for 1 to 

Table 3. Primers for qPCR
Gene Forward Reverse
BCL2 catgtgtgtggagagcgtcaa agtcatccacagggcgatgt
MET agcgtcaacagagggacct gcagtgaacctccgactgtatg
CTNNB1 gcagagtgctgaaggtgctat tctgtcaggtgaagtcctaaagc
JAK2 caggaacaagatgtgaactgtttc cccatgcagagtctttttcag
RAF1 attgggaaatagaagccagtga caaaagagcctgacccaatc
ACTB gcatcccccaaagttcacaa ggacttcctgtaacaacgcatct
EGFR ccactgcaaaacactaaagatcca ttatcctactgtacctgccatgactt
TOP1 ccctgtacttcatcgacaagc ccacagtgtccgctgtttc

HBV DNA integration analysis by PCR

Genomic DNA from tumor cells was 
isolated using QIAamp DNA Mini  
Kit (Qiagen, USA). 10 ng of genomic 
DNA was used to amplify the C, P, S, 
and X gene in the PCR system, respec-
tively. The primers for each gene were 
list below: C: forward 5’-TTGCCTTCT- 
GACTTCTTTCC-3’, reverse 5’-TCTGCG- 
AGGCGAGGGAGTTCT-3’; P: forward 5’- 
GGGTCACCATATTCTTGGGA-3’, reverse 
5’-CCCCGCCTGTAACACGAGCA-3’; S: 
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4 h at 37°C. After incubation, the absorbance 
was read at a wavelength of 490 nm accord- 
ing to the manufacturer’s protocol. The cell via-
bility was calculated relative to the untreated 
cells, respectively. The IC50 was determined  
by GraphPad Prism 5.0 software via nonlinear 
regression.

Statistical analysis

All data are shown as means ± SD. Statistical 
analysis was performed with two-tailed Stud- 
ent’s t test. Significance was established for P 
values of <0.05.

Results

Establishment of HCC cell lines

Tumor tissues from surgical resection of 
Chinese patients of HCC were grafted in SCID 
mice to generate PDX models, and then prima-
ry culture of tumor cells was performed for cell 
lines establishment using the tissues derived 
from the PDX models. 6 HCC PDX models were 
successfully constructed out of 15 tumor tis-
sues from different patients, and the HCC cell 
lines were designated as CNHCC0101, CNH- 
CC0104, CNHCC0106, CNHCC0109, CNHCC- 
0111 and CNHCC0112. The information of the 
patients was listed in Table 1. The ages ranged 
from 49 to 70, and only one patient is female. 
The HBV DNA integration was examined by 
amplification of C, P, S, and X gene of virus 
(Figure 1). The results showed that none of the 
four genes could be detected in CNHCC0106, 
implicating that there was no HBV replication  

in CNHCC0106, which is consistent with the 
HBV negative diagnosis. Furthermore, the 6 
novel cell lines are all HCV and HIV negative. 
STR (short tandem repeat) analysis revealed 
that all these 6 HCC cell lines were derived 
from the corresponding tissues and the STR 
loci profiles were all unique from the other HCC 
commercial cell lines (data not shown).

The characterization of the 6 novel HCC cell 
lines

Cells passaged at least 30-50 times were used 
for analysis of growth kinetics and chromo-
some aberrations. All cell lines were free of con-
tamination by bacteria or mycoplasma. All cells 
grew as monolayer and the cell morphology 
was captured by phase contrast microscopy. 
The morphology of these 6 cell lines differed 
greatly with each other: CNHCC0111 and 
CNHCC0112 cells tend to form clusters, while 
the other four cell lines are uniformly dispersed 
on the plate, respectively (Figure 2A). The 
growth rates of the 6 cell lines were significant-
ly different: CNHCC0106 cells grow at the fast-
est rate, their doubling time is 28 h; CNHCC0104 
cells grow slowly, their doubling time is 77 h, 
nearly 3 times higher than that of CNHCC0106 
cells; while the other four cell lines grow at 
moderate rate, their doubling time range from 
32 to 34 hours (Figure 2B).

Chromosome aberrations could be found in all 
cell lines. Most cell lines had more than 46 
chromosomes except CNHCC0101, which has 
42 chromosomes (Table 2). 

Figure 1. HBV DNA integration analysis by PCR. C, P, S, and X gene were amplified with 10 ng of genomic DNA from 
each cell line, the PCR products were electrophoresis on 1.5% agarose. M1, DNA marker containing 200, 500, 
800, 1200, 2000, 3000, and 4500 bp bands; NC, negative control, containing no genomic DNA but ddH20 as 
PCR template; 1-6, containing 10 ng of genomic DNA from CNHCC0101, CNHCC0104, CNHCC0106, CNHCC0109, 
CNHCC0111 and CNHCC0112, respectively; M2, 100 bp ladder DNA marker containing 100, 200, 300, 400, 500, 
and 600 bp bands.
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The mRNA level of some cancer-related genes

The mRNA expression of some cancer-related 
genes (CTNNB1, MET, RAF1, EGFR, BCL2, JAK2 
and TOP1) was examined in these 6 HCC cell 
lines. Wnt-β-cantenin pathway was one of the 
most recurrently altered pathways in HCC, he- 
nce leading to the aberrant activation of this 
pathway [8, 9, 21, 22]. There were no signifi-
cant difference in the expression of β-cantenin 
among those cell lines (Figure 3), although their 
expression was all higher than that in LO2 cell 
line, a normal liver cell line (data not shown). As 
to EGFR and TOP1 genes, the situation was the 
same as CTNNB1. However, great difference 
existed in the expression of RAF1, BCL2, MET 
and JAK2 genes between these 6 HCC cell 
lines. The expression of RAF1, BCL2 and MET 

genes was all the highest in CNHCC0106 cells, 
which were 3731, 3363 and 24-fold higher 
than that in the lowest expressed cells, respec-
tively. Interestingly, JAK2 expression cannot  
be detected in CNHCC0106 cells. There was 
8-fold difference in JAK2 expression between 
the other 5 cell lines.

In vitro drug response

The 6 novel HCC cell lines were subjected to 
drug screening to investigate their response  
to antitumor drugs. 12 antitumor compounds 
were used, including 6 chemotherapeutic ag- 
ents (Cisplatin, Docetaxel, Doxorubicin, Gemci- 
tabine, Oxaliplatin, and Vinblastine) and 6 tar-
geted compounds (Sorafenib, Everolimus, MK- 

Figure 2. The character-
ization of the 6 HCC cell 
lines. A. The cell morphol-
ogy of 6 HCC cell lines in 
logarithmic growth phase 
was photographed with 
Olympus IX50 microscope 
at 10 times the objective 
lens. B. The growth curves 
of the 6 HCC cell lines 
were plotted every 24 h, 
each point was duplicate. 
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2206, Pictilisib, Ruxolitinib, and Tideglusib). The- 
se cell lines responded differentially to cisplat-
in, gemcitabine and everolimus, while they dis-
played not notable difference in sensitivity to 
the other compounds (Figure 4 and Table 4). 
These cell lines were all sensitive to Docetaxel 
and Vinblastine, the IC50s of these cells to the 
two cytotoxic drugs ranged from 1-14 nmol/L. 
CNHCC0106 cells were the most sensitive to 5 
drugs (Cisplatin, Doxorubicin, Oxaliplatin, Evero- 
limus and Tideglusib), and moderately sensitive 
to the other drugs. CNHCC0111 was the most 
sensitive to gemcitabine. All 6 cell lines were 
resistant to sorafenib, although CNHCC0106 
harbored the highest RAF1 mRNA expression, 
and RAF1 was suggested as a potential marker 
for Sorafenib response [23, 24].

the apoptotic death of some cells to exert a  
survival function. High expression or activation 
of BCL2 has been implicated in various can- 
cers and been regarded as a potential thera-
peutic target in some kind of cancer [25-28]. 
Proto-oncoprotein RAF1 serves as a key sign- 
aling transduction molecule of RAS-RAF-MEK-
ERK pathway and involved in the regulation of 
the cell division cycle, apoptosis, cell differen-
tiation and cell migration. RAF1 amplifica- 
tion, overexpression or activation in various 
cancers was correlated to tumor initiating cell 
regulation and cancer progression, and there-
fore been regarded as a resistant biomarker  
for some targeted therapy and a critical candi-
date target for combination therapy [29-31]. 
Proto-oncogene MET encodes a member of the 

Figure 3. The mRNA levels of 7 cancer-related genes in the 6 HCC cell lines 
were investigated by qPCR. The expression of each gene was calculated 
relatively to the expression in CNHCC0101 cells.

Figure 4. Response of 6 HCC cell lines to 12 antitumor agents. The IC50 
values were determined by MTS assay and calculated with the aid of Graph-
Pad Prism 5.0 software by nonlinear regression.

Discussion

Massive population with HCC in 
China and unmet clinical strat-
egies makes it urgent to con-
struct more Chinese-derived 
preclinical HCC models, includ-
ing patient-derived xenografts 
(PDXs) and patient-derived cell 
lines (PDCs), to improve the 
therapy. On the other hand, the 
great intertumor heterogeneity 
of HCC patients and the devel-
opment of precision cancer ca- 
re needs more preclinical HCC 
models with distinct genomic 
signatures to test targeted co- 
mpounds in vitro. In present 
work, 6 novel Chinese PDX-de- 
rived HCC cell lines were estab-
lished and verified by STR loci 
analysis. They displayed great 
difference on cell morphology, 
growth rate, chromosomal nu- 
mber, mRNA expression of so- 
me cancer-related genes, and 
response to chemotherapy ag- 
ents and targeted compounds. 

CNHCC0106 cells grew at the 
rapidest rate among the 6 cell 
lines. Meanwhile, CNHCC0106 
cells harbored the highest mR- 
NA expression of BCL2, RAF1, 
and MET. BCL2 gene encodes 
an integral outer mitochondrial 
membrane protein that blocks 
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receptor tyrosine kinase, which is activated  
by binding of its ligand, hepatocyte growth fac-
tor, and plays a role in cellular survival, embryo-
genesis, and cellular migration and invasion. 
Amplification and overexpression of this gene 
are associated with multiple human cancers 
[32-34]. Co-overexpression of BCL2, RAF1, and 
MET in CNHCC0106 might render these cells 
great growth advantage over the other 5 HCC 
cell lines. 

Furthermore, CNHCC0106 was resistant to so- 
rafenib in spite of RAF1 overexpression. RAF1 
is one of main target of sorafenib, previous 
study has suggested that breast tumor initiat-
ing cells harboring recurrent RAF1 amplifica-
tion was very sensitive to sorafenib [31]. The 
insensitivity of CNHCC0106 to sorafenib might 
be in the co-overexpression of MET and BCL2, 
two genes promote cancer cell proliferation or 
survival. Firtina Karagonlar et al proposed that 
Met activation is the reason for acquired resis-
tance of HCC cells to sorafenib [35], which may 
help explain the insensitivity of CNHCC0106 to 
sorafenib. 

Interestingly, CNHCC0106 was the only sensi-
tive cell line to everolimus among the 6 novel 
HCC cell lines. Everolimus is a specific mTOR 
inhibitor approved by FDA for treatment of bre- 
ast cancer, pancreatic cancer, gastrointestinal 
cancer, lung cancer, renal cell carcinoma, sub-
ependymal giant cell astrocytoma. TSC1 muta-
tion has been correlated with everolimus res- 
pones [36], which suggests that the genomic 
profiling should be examined among those cell 
lines to identify more occult biomarkers of drug 

sensitivity in patients. Hence, the 6 novel HCC 
cell lines established, especial CNHCC0106, 
warrant a comprehensive detection of genetic 
alterations to explain the sensitivity to everoli-
mus and to figure out more possible responsive 
drugs for these novel cell lines.

Taken together, 6 novel HCC cell lines were 
established from PDX and verified by STR loci 
analysis. These cell lines showed significant  
difference in cell morphology, growth kinetics, 
chromosomal number, mRNA levels of some 
cancer-related genes, and the response to  
chemotherapy and targeted agents. Among 
which, CNHCC0106 grows at the fastest rate, 
harbors the highest expression of BCL2, RAF1, 
and MET, and responds well to everolimus but 
not to sorafenib, which may serve as a useful 
model for new mechanism of action exploration 
of some anticancer drugs. Our work enlarges 
the number of HCC cell lines that can be used 
for further exploring the molecular mechanism 
of HCC and anticancer drug screening.
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