Original Article

Association of STAT4 genetic polymorphisms with biliary atresia in Chinese patients

Jiahao Pei, Rui Dong, Yifan Yang, Chao Zheng, Jia Liu, Shan Zheng

Department of Pediatric Surgery, Children’s Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China

Received December 13, 2016; Accepted December 27, 2016; Epub March 1, 2017; Published March 15, 2017

Abstract: Biliary atresia (BA) is a devastating disease of the liver characterized by progressive fibro-inflammatory obliteration in neonates. Without effective treatment, end stage of liver, will ultimately lead to die about 2 years old. STAT4 is a now known as a susceptibility gene for autoimmune diseases and a STAT4 minor allele may be associated with several liver diseases. A case-control study was done between 113 patients with BA and 133 healthy controls. The rs7574865 and rs8179673 single nucleotide polymorphisms (SNPs) and rs10168266 SNPs in the STAT4 gene were selected for genotyping. There was no significant difference in allele distribution between BA and controls (rs7574865, P = 0.6213, odds ratio [OR] = 1.098, 95% confidence interval [CI] = 0.758-1.589; rs8179673, P = 0.5702, OR = 0.898, 95% CI = 0.620-1.301; rs10168266, P = 0.9351, OR = 1.016, 95% CI = 0.699-1.477), and similar results were found for the genotype and haplotype frequencies of these STAT4 gene polymorphisms. Our results indicated that these STAT4 gene polymorphisms do not have a major role in the development of BA in Chinese children.

Keywords: Biliary atresia, gene polymorphism, Han Chinese patients, STAT4, SNP rs7574865

Introduction

Biliary atresia (BA) is a progressive fibro-inflammatory disease leading to obliteration of the extrahepatic biliary tree during infancy that invariably leads to cirrhosis and liver failure in neonates [1]. The incidence of BA varies widely among populations (from 1/5000 live-births in Asians to 1/18,000 in Caucasians indicating a higher rate in Asia than Western countries [2]. If left untreated, such as a Roux-en-Y hepatic portoenterostomy (Kasai operation), progressive liver cirrhosis will ultimately cause death by the age of 2 years. Failure of the Kasai procedure leaves liver transplantation as the only hope for survival [1, 2].

However, the mechanisms underlying the etiology and pathogenesis of BA remain unknown [3]. Many factors have been proposed to be involved in the etiology of BA including autoimmunity, virus infections, genetic abnormal development, environmental toxins, and abnormal morphogenesis [4-6]. Gene-expression analyses of BA serum or bile ducts and liver tissues indicated that genetic factors may play a significant role in BA pathogenesis. Multiple genetic variants associated with primary biliary atresia have been reported [7]. Genetic susceptibility studies of BA have reported that ADD3 with GWAS signal or ADD3 expression gene variants [8, 9], interleukin (IL)-18 ITGB2 Gene 3’-UTR+145C/A [10] and +276G/T adiponectin gene polymorphisms are strongly associated with biliary atresia [5]. Histologic examination of bile ducts has revealed an exclusively T-cell-mediated inflammatory response. A number of other studies have shown that the portal tracts of patients with BA are related to macrophages. These findings support the idea that BA is an immune-mediated inflammatory disease [3, 11, 12].

The human STAT4 gene is located in a chromosomal linkage region, 2q33, where there are another 12 candidate genes. Stat4 expression is restricted to myeloid cells, thymus, and testis [13, 14]. Signal transducer and activator of transcription 4 (STAT4) is a transcription factor belonging to the STAT family and in human T
STAT4 genetic polymorphisms with biliary atresia

cells it is required for the development of Th1 cells from naive CD4+ T cells and the production in response to IL-12. Among STAT family members, STAT4 has common pathogenic pathways, such as IL-12 signaling, and has an essential and non-redundant role in the development of BA and some of its clinical features.

Many single nucleotide polymorphisms (SNPs) in STAT4 genes are associated with genetic susceptibility to autoimmune diseases [13, 15], including Juvenile Idiopathic Arthritis (JIA) [16], type 1 diabetes [17], inflammatory bowel disease [18], systemic lupus erythematosus [19] (SLE), and rheumatoid arthritis [20] (RA). However, this is the first study to investigate the potential association between BA and STAT4 SNPs (rs7574865, rs10168266) to the best of our knowledge.

Subjects and methods

Study subjects

The research was approved by the ethics committee of the Children’s Hospital of Fudan University (Shanghai, China). Overall, 113 unrelated Chinese children (70 boys, 43 girls) were diagnosed with BA by exploratory laparotomy with operative cholangiography at the Children’s Hospital of Fudan University. All patients between August 2014 and July 2015 underwent successful hepatoportoenterostomy (Kasai operation). The mean operation age of these patients was 68.1 ± 20.7 days (mean ± standard deviation) (range 23-163 days). The control group consisted of 133 healthy Han Chinese children (85 boys, 48 girls) who were recruited randomly from the Department of Pediatrics. None of them had a history of BA or any other liver diseases. After obtaining informed consent from their legal guardians, we took blood samples from the recruited children.

Methods and materials

Because this is the first study of single stat4 gene polymorphisms related to BA, SNPs with minor allele frequencies >5% according to the National Center for Biotechnology Information SNP Database (dbSNP) (http://www.ncbi.nlm.nih.gov/SNP/) were selected from previous studies. Genotyping.

Genomic DNA was extracted from whole blood using the TIANamp Blood DNA Kit (Tiangen, Beijing, China). The three SNPs (rs7574865, rs10168266) are located on the chromosome 2q33 region of the STAT4 gene. Genotyping was performed by MassARRAY on a matrix-assisted laser desorption ionization time of flight mass spectrometry platform and analyzed using MassARRAY Typer software version 3.4 (Sequenom). Primers for PCR and single-base extension were designed with Assay Designers software, version 3.0 (Sequenom, San Diego, CA, USA), and then synthesized by Benegene Biotech (Shanghai, China; Table 1).

Statistical analysis

Each SNP underwent Hardy-Weinberg equilibrium testing for the cases and control groups. Discrepancies in genotype frequencies and alleles between the BA cases and control subjects were evaluated with Fisher’s exact test and \(\chi^2 \) analysis. A \(P \) value of <0.05 was considered statistically significant. Association between STAT4 SNPs and disease status was expressed as odds ratio (OR) and 95% confidence intervals (CI). Statistical analysis was performed with SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). The haplotype frequen-

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP rs no.</th>
<th>Allele</th>
<th>Frequency</th>
<th>p value</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT4</td>
<td>rs7574865</td>
<td>T</td>
<td>83 (0.367)</td>
<td>92 (0.346)</td>
<td>0.6213</td>
<td>1.098</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>143 (0.633)</td>
<td>174 (0.654)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs8179673</td>
<td>T</td>
<td>141 (0.629)</td>
<td>174 (0.654)</td>
<td>0.5702</td>
<td>0.898</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>83 (0.371)</td>
<td>92 (0.346)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rs10168266</td>
<td>T</td>
<td>78 (0.348)</td>
<td>91 (0.345)</td>
<td>0.9351</td>
<td>1.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>146 (0.652)</td>
<td>173 (0.655)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAT4 genetic polymorphisms with biliary atresia

Table 2. Genotype frequency of the 3 SNPs in case group and control group

<table>
<thead>
<tr>
<th>Gene</th>
<th>rs</th>
<th>Genotype</th>
<th>Frequency</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Case</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>STAT4</td>
<td>rs7574865</td>
<td>TT</td>
<td>19 (0.168)</td>
<td>15 (0.113)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GG</td>
<td>49 (0.434)</td>
<td>56 (0.421)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GT</td>
<td>45 (0.398)</td>
<td>62 (0.466)</td>
</tr>
<tr>
<td></td>
<td>rs8179673</td>
<td>CC</td>
<td>19 (0.170)</td>
<td>15 (0.113)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>48 (0.429)</td>
<td>56 (0.421)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>45 (0.401)</td>
<td>62 (0.466)</td>
</tr>
<tr>
<td></td>
<td>rs10168266</td>
<td>CC</td>
<td>51 (0.455)</td>
<td>58 (0.439)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>17 (0.152)</td>
<td>17 (0.129)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT</td>
<td>44 (0.393)</td>
<td>57 (0.432)</td>
</tr>
</tbody>
</table>

because of the low incidence, previous studies investigating possible genes about genome-wide level have been scant. Thus, the main genetic factors associated with BA remain unclear. Most BA-susceptible genes identified to date, including ICAM-1, ITGB2 and ADD3 [10, 21, 22], not only related with BA, but also have a role in inflammatory and immune responses. Similarly, most studies of human STAT4 have focused on correlations between variations in the STAT4 gene and the incidence of autoimmune disease [16-20].

Discussion

Here, we investigated whether three STAT4 gene polymorphisms were involved in the development of BA in Han Chinese patients. We concluded there is no association of the SNPs with BA.

The precise cause and pathogenic mechanisms of BA remain unknown. Genetic factors are known to play a significant role in BA; however, STAT4 is an important signaling molecule for IL-12, IL-17, IL-23 and type I IFNs produced by T cells and NK cells that regulates immune responses, transmits signals from IL-12 (IL-12) and interferons (IFN) to induce IFN-γ production [13, 14]. IL-12, IL-17, and IL-23 are important cytokines that activate STAT4 and initiate the differentiation of Th1 and Th17 cells [14]. Studies of mouse models of infectious and inflammatory diseases revealed that STAT4 is an important factor in inflammatory immunity [26]. STAT4-deficient mice displayed less severe disease and decreased parameters of inflammation compared with wild type mice.

By collecting references [23-25] from PubMed and Springer, we concluded that several liver diseases were associated with STAT4. Findings demonstrate that STAT4 allele may be associated with the spontaneous clearance of HBV [23], whereas the major allele may be associated with the progress of HBV-related liver disease. The combined data indicate that the STAT4 rs7574865 polymorphism may be associated with a significantly reduced risk of HBV-induced HCC [24, 25] in Asians. The association of STAT4 SNPs with BA is less commonly studied, and the molecular mechanisms that underlie the inherited susceptibility of BA remain unclear.

Based on these studies, we hypothesized that a functional STAT4 SNP may also confer potential susceptibility to BA in Han Chinese patients. STAT4 is located on chromosome 2q33, which play significant immune-regulatory roles and administrates a potent transcription factor responsible for transmitting signals stimulated with type1 IFN, IL-23, and IL-12 and so on. IL-12,
a cytokine linked to IL-23, enhances the differentiation of autoimmunity regulated by CD4+ T cells, and is involved in the differentiation of Th1 cells via STAT4 signaling. Therefore, STAT4, as reported earlier, may play as a significant role in many stages of human diseases, concluding initiation, formation, and progression.

However, our findings indicated that these negative associations might be because of the limited selection of SNPs investigated, which did not widely cover the gene, and the small sample size. Thus, a secondary investigation with a larger sample size and bigger statistical power should be performed.

In conclusion, our research findings indicate a lack of association between STAT4 gene polymorphisms (SNPs rs7574865 and rs8179673 and rs10168266) and BA in Chinese Han children. Future studies with a larger dataset and different races are necessary to explore the potential associations between STAT4 genetic polymorphisms and BA.

Acknowledgements

This study was supported by National Key Clinical Specialty Construction Programs of China (2014-2016), Municipal Hospitals’ Project for Emerging and Frontier Technology of Shanghai (SHDC12014106), National Natural Science Foundation of China (no. 81370472, no. 813-00517, no. 81100248 and no. 81500394), Shanghai City Health Bureau for Youth Scientific Fund Project (no. 20134y100), Shanghai Rising-Star Program (A type) (no. 15QA1400800 and no. 14411969860).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Shan Zheng, Department of Pediatric Surgery, Children’s Hospital of Fudan University, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China. Tel: +86-18017591199; E-mail: szheng@shmu.edu.cn

References

