Increased LincRNA ROR is association with poor prognosis for esophageal squamous cell carcinoma patients

Xingxiang Liu, Lin Cui, Jianjun Liu

The Oncology Department of The Second People’s Hospital of Taizhou, 225500, Taizhou, Jiangsu Province, China

Received January 4, 2017; Accepted February 20, 2017; Epub April 1, 2017; Published April 15, 2017

Abstract: Identification of novel biological markers may be beneficial for diagnosis and prognosis for esophageal squamous cell cancer (ESCC) patients. Recent findings have highlighted that long noncoding RNAs (lncRNAs) were involved in the tumor progression including ESCC. However, the clinical significance and function role of LincRNA ROR in ESCC remains unknown. In our study, QRT-PCR assays results proved that LincRNA ROR expression levels were aberrantly higher in 120 cases of ESCC tissues compared to adjacent normal tissues. Furthermore, LincRNA ROR expression levels were significantly associated with lymph node invasion, distant metastasis and TNM stage in ESCC patients. The survival curves were plotted using the Kaplan-Meier methods showed that increased LincRNA ROR expression levels predicted poor disease-free survival (DFS) and overall survival (OS). Multivariate Cox analyses showed that LincRNA ROR expression was an independent risk factor of prognosis in ESCC patients. In vitro, we showed that Knockdown of LincRNA ROR inhibited the cell proliferation and invasion, and suppressed the epithelial-to-mesenchymal transition (EMT) process by decreasing the E-cadherin, but increasing the ZEB1, ZEB2 and Vimentin expression. Hence, these results indicated that lincRNA ROR may be a predicted marker for prognosis and target of therapy in ESCC patients.

Keywords: Esophageal squamous cell carcinoma, LincRNA ROR, prognosis, cell proliferation, epithelial-to-mesenchymal transition

Introduction

Esophageal cancer is the sixth lethal cancer worldwide and esophageal squamous cell carcinoma (ESCC) is the major pathological type [1, 2]. Although the development of diagnosis and therapeutic strategies, due to its aggressive nature, the over survival rates for esophageal cancer patients remains unsatisfactory [3, 4]. To investigate underlying molecular biological mechanisms may improve the prognosis and reduce the risk of tumor recurrence in ESCC patients.

The biological role of long noncoding RNAs in human esophageal squamous cell carcinoma (ESCC) has been reported in previous findings. For example, Down-regulation of MALAT1 expression inhibited cell proliferation, migration and tumor sphere formation, while increasing cell apoptosis of esophageal cancer [5]. High expression of PCAT-1 was specifically correlated with invasion of cancer tissues, metastasis of lymph node, and advanced tumor stage of ESCC [6]. Knockdown of long non-coding RNA TP73-AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma [7]. Enhanced expression of NEAT1 stimulated the proliferation of ESCC cells, and promoted their ability of forming foci, migration, and invasion [8].

The lncRNA linc-ROR (LincRNA ROR) has been shown to contribute to cancer progression. Hou et al reported that Linc-ROR functions as an important regulator of EMT and can promote breast cancer progression and metastasis through regulation of mir-205 [9]. Zhan et al found that Linc-ROR up-regulates ZEB1 and then induces epithelial-mesenchymal transition (EMT), which promotes the aggressive biological behaviors of PC [10]. Yang et al revealed that knockdown of lincRNA-ROR enhanced the sensitivity to radiotherapy for CRC by inhibiting cell viability and promoting apoptosis [11]. Zhou et al showed that Linc-RNA-RoR acts as a
LincRNA ROR promotes esophageal squamous cell carcinoma progression

A

![Box plot showing relative LincRNA ROR expression levels in non-tumor and tumor tissues.](image)

B

![Graph showing cumulative survival rates for ESCC patients with low and high LincRNA ROR expression.](image)

C

![Graph showing cumulative survival rates for ESCC patients with low and high LincRNA ROR expression.](image)

“sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145 [12]. Sahebi R et al found that Linc-ROR and its spliced variants 2 and 4 are significantly up-regulated in esophageal squamous cell carcinoma [13]. However, the clinical role and biological function are not been investigated in the previous studies.

In our report, LincRNA ROR was aberrantly higher in ESCC tissues and higher LincRNA ROR expression levels predicted poor prognosis. In vitro, LincRNA ROR promoted the cell proliferation and invasion. Hence, these findings offer novel potential biomarkers for prognosis evaluation and tumor therapy for ESCC patients.

Materials and methods

Clinical tissue samples

The 120 cases of ESCC tissues and the adjacent normal tissues samples were obtained at the Oncology department of The Second People’s Hospital of Taizhou from March 2008 to June 2014. No patient received radio- or chemotherapy before surgery. The clinical information and follow-ups were carried out in all patients via telephone or mails. The tumor tissues were confirmed diagnosis by two pathological professors. The tissues were snap-frozen in liquid nitrogen and stored at -80°C immediately after resection. The protocol was approved by the Ethics Committee of The Second People’s Hospital of Taizhou and written informed consent from all patients in this study.

Cell culture and transfection

The ESCC cell lines (EC9706 and Eca109) were purchased from the Cell Bank of Shanghai Institute of Cell Biology (Chinese Academy of Medical Sciences, Shanghai, China) and were used in the study. Cells were cultured using the RPMI 1640 medium (Invitrogen, USA) supplemented with 10% fetal bovine serum (FBS, Invitrogen, USA), 100 μg/ml streptomycin and 100 units/ml penicillin (Sigma-Aldrich, USA), in a humidified tissue culture chamber with 5%
CO₂ at 37°C. EC9706 or Eca109 (5×10³/well) were seeded in 96-well plates and were transfected with sh-LincRNA ROR or sh-NC. After transfection, the cells were detected at 0, 24, 48, 72 h, and 96 h. MTT reagent was added and incubated for 4 h at 37°C. The absorbance was measured at 490 nm using a spectrophotometric plate reader (UV-200; Beckman Coulter, Inc.).

Western blotting assays
Total cell proteins were isolated and concentrations were detected using the BCA protein assay kit (Invitrogen, USA). Proteins were separated using 10% SDS-PAGE gel and transferred to PVDF membranes (Millipore). The membrane was blocked with 5% non-fat milk and was incubated with the E-cadherin (1:1000, CST, USA), Vimentin (1:1000, CST, USA), ZEB1 (1:1000, CST, USA), ZEB2 (1:1000, CST, USA) and GAPDH (1:1000, CST, USA). The blot was incubated with horseradish peroxidase (HRP) for 1 hour and then was detected using ECL (enhanced chemiluminescence) system (Pierce Biotechnology, IL).

Statistical analysis
The experiments were performed to repeat for at least three times. Data are shown as mean ± SD. Statistical comparisons were made by Student’s t-tests. An unpaired two-tailed, the P value < 0.05 was identified to be significantly different.

Results
Linc RNA ROR was upregulated in ESCC tissues
QRT-PCR was applied to determine the LincRNA ROR expression levels in the 120 case of ESCC tissue samples and adjacent normal tissue specimens. As was presented in Figure 1A, the
results revealed that the expression levels of LincRNA ROR were significantly higher in the ESCC specimens compared to the adjacent normal tissue specimens. Subsequently, we examined the relationship between LincRNA ROR expression levels and clinical factors of patients. As shown in Table 1, the results revealed that LincRNA ROR expression were correlated with lymph node invasion ($P = 0.001$), distant metastasis ($P = 0.017$) and TNM stage ($P = 0.006$), but not with gender ($P = 0.178$), age ($P = 0.941$), tumor size ($P = 0.903$), and so on.

LincRNA ROR expression levels are associates with poor prognosis of ESCC patients

Furthermore, the survival curves were plotted using the Kaplan-Meier methods showed that patients with higher LincRNA ROR predicted poor disease-free survival (DFS) ($P = 0.009$, log-rank = 6.761) and overall survival (OS) ($P = 0.003$, log-rank = 8.816). To analyze the possibility of LincRNA ROR as an independent risk factor for predicting prognosis, both clinicopathological feathers and the LincRNA ROR expression were assessed by multivariate Cox regression analysis. As shown in Table 2, the data results from the multivariate analysis demonstrated that lymph node invasion (HR = 2.856, 95% CI: 1.118-4.935, $P = 0.001$), distant metastasis (HR = 2.669, 95% CI: 0.972-4.767, $P = 0.001$) and TNM stage (HR = 2.584, 95% CI: 1.011-4.433, $P = 0.001$) and LincRNA ROR expression (HR = 2.926, 95% CI: 1.588-5.144, $P = 0.001$) were independent risk factor for disease-free survival (DFS).

In addition, as shown in Table 2, we also demonstrated that lymph node invasion (HR = 2.988, 95% CI: 1.345-5.425, $P = 0.001$), distant metastasis (HR = 2.899, 95% CI: 1.033-6.445, $P = 0.001$) and TNM stage (HR = 2.785, 95% CI: 1.336-5.122, $P = 0.001$) and LincRNA ROR expression (HR = 3.221, 95% CI: 1.446-6.228, $P = 0.001$) were independent risk factor for overall survival (OS) for ESCC patients. Thus, these results showed that LincRNA ROR expression levels are associates with poor prognosis of ESCC patients.

Knockdown of LincRNA ROR inhibited the cell proliferation and invasion by inhibiting the cell EMT in ESCC

We then analyzed the association between LincRNA ROR expression and cell proliferation and invasion ability by knockdown of LincRNA ROR in EC9706 or Eca109 (Figure 2A and 2B). The results of CCK8 cell proliferation assays showed that cell proliferation ability was significantly inhibited when LincRNA ROR was knocked down in EC9706 or Eca109 cells (Figure 3A and 3D). In the other hand, after transfection with sh-LincRNA ROR, compared with the sh-NC group, the results of transwell cell assays results showed that cell invasion was significantly decreased and the invasive cell number was reducing in the sh-lincRNA ROR group (Figure 3A and 3D). Thus, our data indicate that LincRNA ROR promoted ESCC cell proliferation and invasion in ESCC cells.

LincRNA-ROR was found to induce epithelial-to-mesenchymal transition and contributes to
LincRNA ROR promotes esophageal squamous cell carcinoma progression

breast cancer tumorigenesis and metastasis [9]. Overexpression of LncRNA-ROR promotes the tumor cells proliferation, migration, and invasion and mediates the EMT in gallbladder cancer [14]. Furthermore, we investigated the effect of LincRNA ROR on the epithelial-to-mesenchymal transition (EMT) process of ESCC cells. After transfection with sh-LincRNA ROR, the results of western-blot assays showed that the EMT marker Ecadherin expression level was significantly upregulated, but the transcription factors ZEB1, ZEB2 and EMT marker Vimentin expression levels were decreased in EC9706 or Eca109 cells (Figure 3E and 3F). Thus, our results suggested that inhibition of Lnc RNA ROR expression could suppress cell epithelial-to-mesenchymal transition process in ESCC.

Discussion

Recent studies had have previously shown that LncRNAs was involved in the progression of esophageal squamous cell carcinoma (ESCC). CASC9 is significantly upregulated in ESCC tissues and may represent a new marker of poor prognosis [15]. Knockdown of H19 not only exerts inhibitory effect on tumor proliferation in vitro and in vivo, but also represses the migratory and invasive capacity in esophageal squamous cell carcinoma [16]. LncRNA ZEB1-AS1 is found to be up-regulated in ESCC tissues, increased lncRNA ZEB1-AS1 expression is significantly associated with tumor grade, depth of invasion, and lymph node metastasis [17]. In present study our results demonstrated that lincRNA ROR was aberrantly higher in ESCC tissues compared with adjacent normal tissues. Besides, LincRNA ROR expression was significantly associated with lymph node invasion, distant metastasis and TNM stage in ESCC patients. The survival curves were plotted using the Kaplan-Meier methods showed that increased LincRNA ROR expression levels predicted poor disease-free survival (DFS) and overall survival (OS).
LincRNA ROR promotes esophageal squamous cell carcinoma progression

Some studies have reported that lncRNAs were participated in tumor invasion and metastasis. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma [18]. Long noncoding RNA SPRY4-IT1 promotes esophageal squamous cell carcinoma cell proliferation, invasion, and epithelial-mesenchymal transition [19]. In the study, we demonstrated that LincRNA ROR promoted the cell proliferation and invasion and enhanced the EMT process by inhibiting the E-cadherin expression and upregulating the ZEB1, ZEB2 and Vimentin expression in ESCC cells. In previous study, lincRNA-ROR was negatively correlated with stem cell factor KLF4 and the up-

and down-regulation of lincRNA-ROR resulted in inverse modulation of KLF4 messenger RNA (mRNA) expression [20]. LincRNA-ROR promotes invasion, metastasis and tumor growth in pancreatic cancer through activating ZEB1 pathway [10]. Consistent with these results, we found that LincRNA ROR promoted cell proliferation and invasion in ESCC cells.

In conclusion, in the study, we found that LincRNA ROR was aberrantly higher in ESCC and higher LincRNA ROR had a poor prognosis in ESCC patients. In vitro, LincRNA ROR promoted the cell proliferation, cell invasion and EMT process in ESCC cells. Thus, these finds indicated that LincRNA ROR may be a potential predictor for prognosis and target of treatment in ESCC.

Figure 3. Knockdown of LincRNA ROR inhibited the cell invasion and EMT in ESCC cells. A-D. The cell invasion ability and cell invasive number was evaluated by transwell assays after LincRNA ROR was knocked down in EC9706 or Eca109. E, F. The relative protein expression levels of E-cadherin, ZEB1, ZEB2, and Vimentin were evaluated by western-blot assays after LincRNA ROR was knocked down in EC9706 or Eca109. Data are shown as mean ± SD from at least three independent experiments, **P < 0.05.
Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xingxiang Liu, The Oncology Department of The Second People’s Hospital of Taizhou, No. 27, Health Road, Jiang Yan District, 225500, Taizhou, Jiangsu Province, China. Tel: 86-523-88112603; E-mail: liuxinxiangw1@163.com

References

