Original Article

Association between hMLH1 promoter methylation and gastric cancer in East Asians: a meta-analysis

Yanqing Liu, Jianjun Zhang

Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China

Received January 6, 2017; Accepted February 20, 2017; Epub March 1, 2017; Published March 15, 2017

Abstract:

Background: The hMLH1 gene is a key member of DNA damage repair genes. The studies on the relationship between hMLH1 promoter methylation and gastric cancer are frequently appearing in East Asians. However, the exact conclusion is not clear. To better understand the association between gastric cancer and hMLH1 promoter methylation, we performed a comprehensive meta-analysis.

Methods: We conducted a meta-analysis by systematically reviewing the related articles which were published in English or Chinese and concerned on hMLH1 promoter methylation and gastric cancer in East Asians. Finally 17 studies with 1943 cases and 1575 controls were included in this meta-analysis. Odds ratios and their 95% confidence intervals were used to reveal the quantitative relationship between gastric cancer and hMLH1 promoter methylation.

Results: A strong significant association was observed between hMLH1 promoter methylation and gastric cancer. The frequencies of hMLH1 promoter methylation in gastric cancer tissues were higher than those of adjacent normal tissues (OR=15.73, 95% CI=8.05-30.75) and cancer-free subjects (OR=19.03, 95% CI=7.83-46.23). In addition, we observed significant association of hMLH1 promoter methylation with age, gender, histological differentiation and lymph node metastasis (age: OR=0.53, 95% CI=0.36-0.79; gender: OR=0.71, 95% CI=0.52-0.96; histological differentiation: OR=2.26, 95% CI=1.06-4.81; lymph node metastasis: OR=0.59, 95% CI=0.39-0.88), but no association of hMLH1 promoter methylation status with peritoneal or distant metastasis and Helicobacter pylori infection (peritoneal or distant metastasis: OR=0.56, 95% CI=0.28-1.15; Helicobacter pylori infection: OR=2.02, 95% CI=0.96-4.25).

Conclusion: Our investigations demonstrated that strong associations exist between hMLH1 gene methylation and gastric cancer in populations of East Asia.

Keywords: hMLH1, methylation, gastric cancer, meta-analysis

Introduction

Gastric cancer is one of the most common digestive tract malignant tumors all over the world. East Asia is the region with the highest incidence rate of gastric cancer [1]. In China alone, 400,000 new cases of gastric cancer were diagnosed each year which accounted for over 40% of the total number in the world, the large number, poor prognosis and limited treatment options have made gastric cancer become a major health burden in East Asia [2].

The progress of gastric cancer involves a complex process of multiple factors, multiple genes and multiple steps of common participation, the details of the process is not completely understood. Previous studies indicated that environmental factors such as eating habits, smoking, alcohol consumption and Helicobacter pylori infection are related to gastric cancer. With the development of tumor molecular biology, genetic factors which include a number of genetic and epigenetic alterations of tumor-related and tumor suppressor genes have also been confirmed to involved in the pathogenesis of gastric cancer [3-5]. Recent studies have shown that abnormal promoter methylation of some specific genes may play a critical role in gastric tumorigenesis [6-8].

DNA mismatch repair (MMR) genes play a very important role in keeping genetic stability to avoid the occurrence of gene mutation [9]. In gene replication stage, MMR deflection caused the recognition and repair of DNA mismatches cannot be completed, which lead to a higher
Mutation rate [10]. Mutation and promoter methylation of MMR have been confirmed to be related to human cancer [11, 12]. Human mutL homolog 1 gene (hMLH1) is a major part of MMR, aberrant DNA methylation of hMLH1 gene promoter is an important epigenetic alteration involved in silencing of MMR gene. A lot of Studies have shown that aberrant DNA methylation of hMLH1 promoter associated with many human cancer types [13-16].

Many studies have discussed about the relationship between aberrant methylation of hMLH1 promoter and gastric cancer in East Asians, however the results of the related studies are unsatisfactory. Due to the limitations of small sample sizes, low statistical power, selection bias and other mistakes in a single study, a systemic meta-analysis combine all the available studies needs to be performed.

Materials and methods

Publication search

All studies published before January 1st, 2016 that investigated the association between the hMLH1 promoter methylation and gastric cancer in populations of East Asia were considered in this meta-analysis. We conducted a systematic search via PubMed, Web of Science, China National Knowledge Infrastructrue (CNKI) using the following keywords: [“methylation” OR “hypermethylation”] AND [“hMLH1”] AND [“gastric cancer” OR “gastric carcinoma” OR “gastric tumor” OR “gastric neoplasm” OR “stomach cancer”]. The articles included in the meta-analysis were limited to be published in only English and Chinese. More available articles were further collected by reviewing the bibliographies to make sure that all relevant articles were included.

Inclusion and exclusion criteria

Studies were included and excluded according to the following criteria: 1) Case-control and case-cohort studies which assessed the association of hMLH1 methylation and gastric cancer. 2) The study population is East Asian (Chinese, Korean or Japanese). 3) All the included studies must provide original data about the frequency of hMLH1 promoter methylation. 4) All patients must be histologically identified with gastric cancer. 5) If some studies may have overlapping data, we selected the study with the largest sample size.

Data extraction

Two investigators independently extracted the following information from each included article: language of publication, first author’s name, publication year, design of study, num-
hMLH1 methylation and gastric cancer

Figure 1. Forest plot for the differences in hMLH1 promoter methylation status between gastric cancer samples and control samples. A. Gastric cancer tissues VS Adjacent normal tissues. B. Gastric cancer patients VS Cancer-free subjects. C. Subgroup analysis between Chinese and Japanese.
hMLH1 methylation and gastric cancer

Table 2. Summary of relationships between clinicopathological characteristics and hMLH1 methylation status

<table>
<thead>
<tr>
<th>Clinicopathological characteristics</th>
<th>Pooled OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (<60 VS ≥60)</td>
<td>0.530</td>
<td>0.357-0.788</td>
<td>0.002</td>
</tr>
<tr>
<td>Gender (Male VS Female)</td>
<td>0.708</td>
<td>0.522-0.960</td>
<td>0.026</td>
</tr>
<tr>
<td>Histological differentiation (Poor VS Good)</td>
<td>2.262</td>
<td>1.064-4.809</td>
<td>0.034</td>
</tr>
<tr>
<td>Peritoneal or distant metastasis (M0 VS M1)</td>
<td>0.564</td>
<td>0.278-1.145</td>
<td>0.113</td>
</tr>
<tr>
<td>Helicobacter pylori infection (HP+ VS HP-)</td>
<td>2.020</td>
<td>0.961-4.247</td>
<td>0.064</td>
</tr>
<tr>
<td>Lymph node metastasis (NO VS N1)</td>
<td>0.586</td>
<td>0.389-0.882</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Among the 17 studies, 15 of them were case-control study and the other 2 were clinical cohort study, which all together contain 1943 cases and 1575 controls. All included studies contain 14 English and 3 Chinese articles, 11 of which take Chinese as their study subjects, and Japanese 5, South Korean 1. All their publication years range from 2001 to 2014. Only one study used combined bisulfite restriction analysis (COBRA) method, the all the other 16 studies used methylation-specific polymerase chain reaction (MSP) method to detect hMLH1 promoter methylation status in samples. The basic information of the included studies was summarized in Table 1.

Quantitative data synthesis

Since the results of heterogeneity test showed that there was no remarkable heterogeneity within the included studies, the fixed effects model was used to explore the association between hMLH1 promoter methylation and gastric cancer. The results overall showed that the frequencies of hMLH1 promoter methylation in gastric cancer tissues were significant higher than those adjacent normal tissues (OR=15.73, 95% CI=8.05-30.75, P<0.01) (Figure 1A) and cancer-free subjects (OR=19.03, 95% CI=7.83-46.23, P<0.01) (Figure 1B). In the subgroup analysis by study population, the same strong association was observed in both Chinese (OR=26.41, 95% CI=9.69-71.96, P<0.01) and Japanese (OR=6.95, 95% CI=2.75-17.58, P<0.01) (Figure 1C).

Subsequently we analyzed the relationship between gender, age, histological differentiation, peritoneal or distant metastasis, Helicobacter pylori infection, lymph node metastasis and hMLH1 methylation status, among them. age, gender, histological differentiation and lymph node metastasis showed a statistical differences. The detailed results showed in Table 2 and Figure 2. The pooled data indicated that the younger patients with a lower methylation rate of the pooled OR is 0.53 (95% CI=0.357-0.788, P=0.002).
Figure 2. Forest plot for the differences of hMLH1 promoter methylation status between different clinicopathological characteristics. A. Age (<60 VS ≥60). B. Gender (Male VS Female). C. Histological differentiation (Poor VS Good). D. Lymph node metastasis (N0 VS N1).
Publication bias and sensitivity analysis

Funnel plot and Egger’s test were used to detect the presence of publication bias. The funnel plots showed no obviously asymmetry by visual observation (Figure 3). Then Egger’s test also provided statistical evidence to support that no publication bias overall the analysis. We also conducted a sensitivity analysis to assess the impact on the overall results by one single study. There was no single study that could make a qualitative difference on the overall pooled estimates, which indicating that our results were robust and reliable.

Discussion

The damaged and inappropriate base pairs will also appear in the process of normal DNA metabolism, and body have some special system to repair these genetic damages, including nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR). MMR is a very critical genome caretaker system, which can repair DNA mismatches, reduce the spontaneous mutation, make trigger apoptosis of large amounts DNA damage cell to achieve the purpose of maintaining genomic stability and preventing cell excess growth such as tumor [12, 34]. Defects in MMR lead to a mutator cellular phenotype, which is treated as hallmarks of high spontaneous mutation rate and increased microsatellite instability (MSI) [11]. In human MMR pathway mainly included the participation of MutS, MutL, exonuclease (ExoI), and their function is DNA mismatch/damage recognition (MutS), molecular matchmaker/chaperone (MutL), and removing mispaired base (ExoI) respectively. So far four kinds of human MutL homologs have been found, hMLH1, hMLH3, hPMS1 and hPMS2. The effect of hMLH1 is particularly critical, because it plays a role in MMR pathway by forming three kinds of heterodimeric complexes with hMLH3, hPMS1 or hPMS2 [12]. Existing studies have shown that hMLH1 germline mutation is mainly involved in the hereditary tumors, hMLH1 gene inactivation in sporadic...
hMLH1 methylation and gastric cancer

tumors displaying MSI is mainly due to the hMLH1 promoter methylation, not mutation in coding sequence [14, 35-37]. The following vitro experiments have confirmed that in tumor cell line lake of hMLH1 expression by hypermethylation in hMLH1, after being treated with 5-aza-deoxycytidine (a kind of demethylation agent), hMLH1 protein expression was restored, and the expression level is associated with drug does [38, 39].

Gastric tumorigenesis involves composite effect of genetic and environmental factors. Early genetic factors studies mainly concentrated on the genetic alterations, in the past several decades, the relationship between epigenetics and tumorigenesis has been paid more attention. Aberrant promoter methylation cause of cancer-related gene inactivation is widely considered the most relevant epigenetic mechanism in gastric cancer [40]. In the study of epigenetics in gastric cancer, RUNX3, P16, DAPK, RASSF1A, hMLH1 promoter methylation statuses were frequently concerned [7, 41, 42].

Our study is the first meta-analysis focus on hMLH1 promoter methylation and gastric cancer. Finally the study included 17 related articles to quantify the exact role of hMLH1 methylation playing in gastric cancer. The overall OR for methylation status in gastric cancer tissues vs adjacent normal tissues was 15.73, gastric cancer patients vs cancer free subjects was 19.03, which demonstrated a strong association between gastric cancer and hMLH1 promoter methylation status.

Our results also showed that a significant association between hMLH1 methylation status and age, hMLH1 promoter methylation is frequently found in older people. Nan et al [43] carried out a study in South Korea which showed that cigarette smoking and alcohol consumption were associated with increasing likelihood of gastric cancer with hypermethylation of hMLH1 gene promoter. In Kashmiris, a significant association between aberrant methylation of hMLH1 gene promoter and smoking, consumption of local hot salted tea, intake of sundried vegetables was existed too [44, 45]. These results indicate that methylation status of hMLH1 gene may be affected by environmental risk factors, with the growth of the age, the methylation status of age-related methylation gene changes, and the effect of cellular-environmental interactions steady accumulation.

Then, we found that there’s a statistical association between hMLH1 promoter methylation status and histological differentiation, lymph node metastasis. This result suggests that promoter methylation of hMLH1 gene may involve in the progression of gastric cancer and appears a poor prognosis. And the relationship between the defects of hMLH1 protein expression and drug resistance has been confirmed in several types of cancer, such as ovarian cancer and breast cancer [46, 47]. These promptings it have a potential clinical application value of being a biomarker for prognostic evaluation in gastric cancer; therefore, further studies should be performed.

In this study, no statistically significant association between Helicobacter pylori infection and hMLH1 promoter methylation status was found. As early as 1994, International Agency for Research on Cancer (IARC) recognized Helicobacter pylori infection as a certain cause of gastric cancer, the epidemiological investigation showed that the occurrence of gastric cancer is closely related to the Helicobacter pylori infection [48]. The relationship between Helicobacter pylori infection and DNA methylation remains controversial, but a further study found that tumors with methylated hMLH1 gene was associated with Helicobacter pylori vacA s1 [49-51]. Studies suggest that missing the Helicobacter pylori typing step may be the cause of the conflicts between the related studies, further study should verify this reason.

Some limitations of this meta-analysis should be realized. First of all, most of the studies didn’t get the original database, and part of them didn’t show the detailed information such as gender, age, and clinical pathological features. What’s more, meta-analysis may cause the selection bias inevitable. However, many advantages exist in our meta-analysis. Firstly, it’s the first meta-analysis about the relationship between hMLH1 promoter methylation status and gastric cancer. Secondly, no obvious publication bias was found in the included studies. Thirdly, no heterogeneity was observed in the study. Consequently, the results of this study are reliable and stable.

Conclusions

In summary, this meta-analysis provides evidence to prove that there’s a strong association of hMLH1 promoter methylation status with the
hMLH1 methylation and gastric cancer

risk and prognosis of gastric cancer. However, due to the mentioned disadvantages, further studies with a larger sample size are required to confirm the exact participatory process of hMLH1 promoter methylation in gastric tumorigenesis.

Disclosure of conflict of interest

None.

Address correspondence to: Jianjun Zhang, Department of Gastric Surgery, Cancer Hospital of China Medical University, LiaoNing Cancer Hospital & Institute, Shenyang 110042, Liaoning, China. E-mail: zhangjianjun1382@126.com

References

[13] Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS and Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer research 1999: 59: 159-164.
hMLH1 methylation and gastric cancer

hMLH1 methylation and gastric cancer

