EBV-LMP1 regulating AKT/mTOR signaling pathway and WWOX in nasopharyngeal carcinoma

Lingyan Qin1*, Xiaohong Li2*, Zhongyuan Lin2, Hongtao Li2, Yingxi Mo2, Fang Su2, Wuning Mo2, Zheng Yang2

1Department of Clinical Laboratory, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China; 2Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China. *Equal contributors.

Received January 9, 2017; Accepted March 15, 2017; Epub August 1, 2017; Published August 15, 2017

Abstract: Our previous studies found the expression of tumor suppressor gene WWOX was reduced in nasopharyngeal carcinoma (NPC), and WWOX expression gradually declined with the progress and lymph node metastasis in patients. These suggested that WWOX was related with the development of NPC. AKT/mTOR signaling pathway was considered the primary pathway of cancer cell survival. AKT/mTOR pathway and WWOX had been found to be closely related. NPC was closely related to infection of Epstein-Barr virus (EBV). The study mainly used oncogene LMP1 of EBV as a starting point to explore whether LMP1 regulated the AKT/mTOR signaling pathway and WWOX gene. Western blot and qPCR were used to detect the expression of AKT/mTOR pathway (AKT, p-AKT, p70S6K and p-p70S6K) and WWOX in nasopharyngeal carcinoma cell lines CNE1 and CNE1-LMP1, and accessed relationship of LMP1 with AKT/mTOR and WWOX. Research of correlation between LMP1 and WWOX gene expression suggested that in CNE1-LMP1 cells, WWOX gene and protein levels were decreased compared with CNE1 cells (P=0.025, P=0.042, respectively). The difference was statistically significant, and suggested that LMP1 expression correlated with WWOX. Research of correlation between LMP1 and AKT/mTOR signaling pathway demonstrated that when cell line CNE1-LMP1 was compared with CNE1 in AKT/mTOR pathway key protein of AKT, p-AKT, p70S6K and p-p70S6K expression, P values were 0.075, 0.008, 0.124, 0.034, respectively, and expression of p-AKT, p-p70S6K in CNE1-LMP1 were higher than CNE1, which were significantly different from each other. It suggested AKT/mTOR pathway was regulated by LMP1. WWOX gene and AKT/mTOR signaling pathway were regulated by the EBV-LMP1 oncogene.

Keywords: WWOX, LMP1, nasopharyngeal carcinoma, AKT/mTOR, signaling pathway

Introduction

High incidence of NPC is in southern China, the morbidity and mortality rates rank the highest in the world. Currently, the main treatment for NPC is radiotherapy, but the treatment method can lead to a series of complications, and the effect is not ideal. According to epidemiological statistics, nasopharyngeal cancer mortality was 6.61/100,000 in some provinces, such as Guangxi Zhuang Autonomous Region. The mortality rate for men and women were 9.53/100 000 and 3.40/10 million, namely that male and female mortality ratio was 2.80:1. NPC accounts for 5.60% of all cancer deaths, ranked No. 4 cancer deaths. It seriously impacts on people's living standards and quality of life. Genetic, epigenetic and environmental factors NPC plays an important role in the pathogenesis of EBV [1-4]. NPC is the typical genetic-environ-
EBV-LMP1 regulates WWOX via AKT/mTOR signaling pathway

Activation of oncogenes, inactivation of tumor suppressor genes and other factors are related to the development of NPC. The present gene and protein levels have become a hot research direction to seek for its mechanisms. EBV is an oncogenic virus. Studies have shown that the load and the detection rate of EBV-DNA and EBV-VCA-IgA were significantly higher in the serum of patients with NPC as compared to healthy people [4], also confirmed the development of EBV and NPC was closely related. EBV expression of genes included LMP1 (latent membrane protein 1), LMP2, EBNA1, EBNA2, etc., and LMP1 was currently the only proven oncogene playing an important role in the malignant transformation of cells.

AKT/mTOR signaling pathway was the very important pathway inside the cell in the tumor process, and played an extremely considerable biological functions including proliferation, growth, survival, angiogenesis, apoptosis, autophagy and so on [5-7]. The pathway abnormalities could cause a range of diseases, including cancer [8-10], neuropathy [11], autoimmune disease [12] and hematopoietic disorders [13]. In 2000, Bednarek et al. [14] cloned a new tumor suppressor gene WWOX on chromosome 16. The region located on chromosome 16q23.3-24.1. It was across the common chromosomal fragile sites FRA16D, which was easy to break or lose, and leaded inactivation of the adjacent gene in the region. WWOX encoded protein could induce apoptosis, and the genetic defects and many types of cancer were closely related. It was very similar to the fragile histidine triad (FHIT) gene, and thus was considered to be another new tumor suppressor gene after FHIT tumor suppressor gene.

Materials and methods

Cell culture

CNE1 and CNE1-LMP1 cell lines were provided by Xiangya School of Medicine, Central South University, Hunan. Cells were cultured in growth medium (RPMI-1640 medium, 10% fetal bovine serum, 100 kU/l penicillin, 100 mg/l streptomycin) at 37°C, 5% CO₂ and a humidified atmosphere.

RT-PCR and western bolt

Total RNA was isolated by TRIzol reagent (Invitrogen, USA) according to the protocol supplied by the manufacturer, and quantified by spectrophotometry. Then, 1 μg of total RNA was reverse transcribed by Reverse transcription kits of the TIANGEN Biotech (Beijing) Company Limited according to its instructions. The sequences of primers were as follows: β-actin: TTGCCGACAGGATGCAGAAGGA (sense), and AGGTGGACAGCGAGGCCAGGAT (anti-sense). WWOX: TCGCAGCTGGTGGGTGTAC (sense), and AGCTCCCTGTTGCATGGACTT (anti-sense). GAPDH: GCACCGTCAAGGCTGAGAAC (sense), and TGGTGAAGACGCCAGTGGA (anti-sense). The β-actin gene and GAPDH gene were selected as the internal reference genes. Expected PCR product will be 129 base pairs for β-actin gene, 73 base pairs for WWOX gene, and 138 base pairs for GAPDH gene. Quantitative RT-PCR (WWOX and GAPDH) was performed with a SYBR Green PCR kit (Takara) using the StepOnePlus™ Real-Time PCR System (Life Technologies, USA).

Cells were harvested and lysed in ice-cold lysis buffer. After centrifugation, the protein concentrations of supernatant were determined by BCA protein assay kit (Beyotime, China). Equal amounts of proteins were separated by SDS PAGE and transferred to polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with Tris buffered saline which contained 0.1% Tween-20 and 5% skim milk. Then the membranes were incubated with antibod-
EBV-LMP1 regulates WWOX via AKT/mTOR signaling pathway

Discussion

Tumor development involves complex multi-step process, including activation of oncogenes and inactivation of tumor suppressor genes.
EBV-LMP1 regulates WWOX via AKT/mTOR signaling pathway

Research on tumor development mechanism at the gene and protein level, has become a hot research direction. NPC is more common in southern China, and is a local carcinoma. It belongs to epithelial malignancies. The top of the nasopharynx is the most common occurrence site, followed by the outer wall and pharyngeal recess. NPC presents with early cervical lymph node metastasis and distant metastasis. Because of its occult occurrence site, the majority of patients have been diagnosed in the advanced stage and the treatment results are poor. Thus, exploring the NPC from the level of gene expression on development mechanism has become an important part of NPC basic research. Gene expression studies include two aspects: transcriptomics and proteomics. They study gene mRNA expression and protein expression, respectively. Simultaneous detection of mRNA and proteins in cancer research has become a trend today.

WWOX gene was discovered in 2000, and was similar to FHIT tumor suppressor gene. Therefore, it was considered to be a new candidate tumor suppressor gene. A large number of experiments showed, WWOX protein involved in the regulation of apoptosis, proliferation and/or maturation, and the downregulation or absence of WWOX expression was closely related to epithelial cancer [17-25]. Restoring or increasing the expression of the gene might play a significant inhibition in tumor. Currently, domestic and international coverage was still less research about WWOX tumor suppressor gene in NPC. Its mechanism was not yet fully clear.

EBV was one of DNA oncogenic viruses, which encoded two important latent membrane proteins (LMP1, 2) and one nucleoprotein (EBNA1). Only LMP1 was confirmed as a tumor gene, which played a very important role in the tumorigenic process in NPC. LMP1 could cause NPC by survivin, NF-κB, AKT/mTOR, p38 MAPK, ERK1/2, JNK1/2 and other signal transduction pathways [15, 30-32]. Its carcinogenicity increased the risk of tumorigenesis, and its associated signaling pathways and biological function had become a hot research in molecular biology.

AKT/mTOR signaling pathway was intracellular transduction pathway, which played an extremely important biological functions in tumor cell proliferation, growth, survival, angiogenesis, apoptosis, autophagy and other processes [5-7]. The pathway was considered as the primary pathway of cancer cells to survive. The abnormalities of the pathway could cause a range of cancer. EBV was closely related to AKT/mTOR and might play a role in tumor promotion through the pathway [15, 33]. In addition, a study found that AKT/mTOR pathway could regulate WWOX expression of primary cutaneous T-cell tumors [16]. WWOX gene possibly played a tumor suppressor role through the interactions of apoptosis factor or signaling pathways [27, 34]. Therefore, we speculate LMP1 might regulate WWOX expression via AKT/mTOR pathway. Next, we would further study the content.

Research of correlation between LMP1 and AKT/mTOR signaling pathway showed when CNE1-LMP1 was compared with CNE1 by the key protein of AKT, p-AKT, p70S6K and p-p70S6K, \(P \) values were 0.075, 0.008, 0.124, 0.034, respectively, and expression of p-AKT, p-P70S6K in CNE1-LMP1 were higher than CNE1, which were significantly different from each other. It suggested AKT/mTOR pathway was regulated by LMP1. This result was similar to findings Chen et al. [15]. Namely, LMP1 activated AKT/mTOR signaling pathway changes, altered expression of protein phosphorylation, and activated p-AKT, p-P70S6K and other proteins to promote the growth and spread of cancer cells. LMP1, as the upstream oncogene of AKT/mTOR pathway, had an important regulatory role in the expression of the downstream pathway-related genes, and even might cause related diseases.

Research of correlation between LMP1 and WWOX gene, protein expression: in CNE1-LMP1 cells, WWOX gene and protein levels were decreased compared with CNE1 cells \((P=0.025, P=0.042, \text{respectively}) \), which was significantly
EBV-LMP1 regulates WWOX via AKT/mTOR signaling pathway

different from each other, and suggested that LMP1 expression correlated with WWOX. Many studies had shown that, WWOX gene was as a tumor suppressor gene, and its reduced expression could promote the development of cancer. Our results suggested that virus oncogene might reduced expression of tumor suppressor genes, and thus contributed to the occurrence of cancer.

LMP1 upregulated phosphorylation levels of AKT/mTOR pathway and downregulated expression levels of WWOX, and then promoted the development of NPC. However, some important message pathways, which affected by the LMP1 and resulted in cell proliferation, aging, death and malignant transformation, needed to be further study. Next, we also need to further study whether LMP1 regulates WWOX through the AKT/mTOR pathway.

In summary, LMP1 gene might have multiple effects. It could reduce the expression of tumor suppressor gene, such as WWOX gene. At the same time, it could activate AKT/mTOR pathway to prompt the development of NPC. The results of the study provided an experimental basis for the further study of the molecular mechanism of LMP1.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (grant numbers 81460414) and Research Funds for the Guangxi Universities (grant numbers YB2014059).

Disclosure of conflict of interest

None.

Address correspondence to: Wuning Mo and Zheng Yang, Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, People's Republic of China. Tel: +86 771 5329287; Fax: +86 771 5350031; E-mail: mown16300@126.com (WNM); jackyyoung@foxmail.com (ZY)

References

[12] Gharagozloo M, Javid EN, Rezaei A and Mousavizadeh K. Silymarin inhibits cell cycle progression and mTOR activity in activated human T cells: therapeutic implications for auto-
EBV-LMP1 regulates WWOX via AKT/mTOR signaling pathway

EBV-LMP1 regulates WWOX via AKT/mTOR signaling pathway