Original Article

IRAK1 and TRAF6, inversely modulated by antitumor miR-146a-5p, markedly promotes the progression of NSCLC

Yu Zhang¹*, Rong-Quan He²*, Xiao Wang³, You-Rong Chen², Mei-Wei Li², Xiu-Ling Zhang¹, Jie Ma², Gang Chen¹, Xiao-Hua Hu²

Departments of ¹Pathology, ²Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China; ³Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, P. R. China. *Equal contributors and co-first authors.

Received February 13, 2017; Accepted February 25, 2017; Epub May 1, 2017; Published May 15, 2017

Abstract: MiR-146a-5p was proved to play significant roles in both tumorigenesis and development of diverse neoplasms, including non-small cell lung cancer (NSCLC). In the current research, qRT-PCR and immunohistochemistry were applied to verify the correlation of miR-146a-5p and IL-1 receptor-associated kinase 1 (IRAK1) or TNF receptor-associated factor 6 (TRAF6) at the tissue level. Besides, colorimetric tetrazolium (MTS) assay, fluorimetric resorufin viability assay, Hoechst 33342/PI double staining assay and caspase-3/7 activity assay were performed to research the effect of miR-146a-5p and IRAK1 or TRAF6 on cell growth and apoptosis at the cellular level. Meanwhile, Western blot was applied to detect IRAK1 and TRAF6 protein expression in NSCLC cells. And dual-luciferase reporter assay was performed to demonstrate whether miR-146a-5p could directly target 3'-untranslated region (3'-UTR) of IRAK1 and TRAF6. In conclusion, we identify that miR-146a-5p could act as an underlying tumor suppressor in NSCLC. Also, miR-146a-5p could down-regulate the IRAK1 and TRAF6 expression, leading to inhibition of proliferation and increased apoptosis of NSCLC cells. The effect of miR-146a-5p and its targets on the proliferation and apoptosis of NSCLC cells could provide new information in the target therapy of NSCLC.

Keywords: MiR-146a-5p, IRAK1, TRAF6, NSCLC

Introduction

Lung cancer, one of the lethal malignancies, remains the first leading cause of cancer-related deaths all over the world [1-3]. Non-small cell lung cancer (NSCLC) accounts for ~80% of total newly diagnosed lung cancers with a poor 5-year survival rate [4-7]. In the past few decades, strategies for the treatment and diagnosis of NSCLC have been improved. However, the prognosis and survival rate of NSCLC are still dismal [8-10]. Hence, the identification of efficient molecular biomarkers, such as microRNAs (miRNAs), is of paramount significance to the early screening and diagnosis of lung cancer.

MiRNAs are small non-coding RNAs. The current researches propose that miRNAs play pivotal roles in diverse biological processes, such as apoptosis and proliferation [11-13]. Many reports demonstrate that miRNAs dysregulate in a number of neoplasms such as renal cell carcinoma, gastric cancer and lung cancer [9, 14, 15]. As reported, miRNAs can regulate gene expression via binding to the 3’-untranslated region (3’-UTR) of targets [6, 16, 17]. In fact, various abnormally expressed miRNAs have been confirmed in different human cancers, including NSCLC [18-20]. Typically, miR-133b has been documented to suppress cell growth, cell migratory capacity and invasive ability of NSCLC cells by targeting MMP9 [18], while miR-543 enhances the proliferation and invasion of NSCLC cells via targeting PTEN [19].

Previous studies have certified that miR-146a-5p plays significant roles in proliferation, invasion and cell cycle in lung cancer, esophageal squamous cell carcinoma and bladder cancer...
As reported, the effects of miR-146a-5p are conflicting depending on the cancer type. For example, miR-146a-5p can execute tumor suppressive function in ovarian or lung cancer as reported [24, 25], whereas in melanoma and anaplastic thyroid cancer, miR-146a-5p acts as a tumor oncogene and contributes to the initiation and progression [26, 27]. Previously, our study found that the low expression of miR-146a-5p was related to distant metastasis and advanced clinical TNM stage in NSCLC (P<0.05). In functional experiments, miR-146a-5p can inhibit cell growth, induce cellular apoptosis via targeting epidermal growth factor receptor (EGFR) and nuclear factor kappa B (NF-κB) signaling in NSCLC cells [25]. Besides, according to the prediction by MiRDB (available online: http://www.mirdb.org/) and TargetScan (available online: http://www.targetscan.org/), miR-146a-5p can target IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6), which have been functionally confirmed in inflammation, cardiac dysfunction, hepatocellular carcinoma and oral carcinoma [28-31]. As reported, IRAK1 is the first member of IRAK family and a key downstream component of the TLR signaling [32]. The missing of TLRs contributes to cancer, allergy and immune abnormalities [33, 34]. IRAK1 also can suppress I Kappa B Kinase Alpha (IK-Ba), and activate NF-κB [35]. TRAF6 is an amplified gene and can play essential roles in inflammation and immunity [36, 37]. TRAF6 also can be involved in the inhibition of apoptosis and potential of growth via activating NF-κB signaling [37, 38]. In addition, the relationship between miR-146a-5p and IRAK1 and TRAF6 in NSCLC has not been elucidated. In this study, the expression and function of miR-146a-5p, IRAK1 and TRAF6 are investigated in NSCLC patient tissues and cell lines.

Materials and methods

Tissue samples

We collected tissues from 65 NSCLC patients, which contained 35 male and 30 female lung tissues. All of these NSCLC tissues were collected from the First Affiliated Hospital of Guangxi Medical University, P. R. China (from January 2010 to December 2012). All of these NSCLC samples were randomly collected after surgical resection or biopsy. The study protocol was approved by the Ethical Committee of the First Affiliated Hospital of Guangxi Medical University, and the informed consents were provided by the clinicians and patients. The age of these cases was ranged from 29-83 years. Among 65 NSCLC patients, 44 cases were with lymph node metastasis, 46 cases were with advanced TNM stage (III-IV), 32 cases were with vessel invasion, and 23 cases were with larger tumor size (>3 cm).

Cell culture and re-expression or inhibition of miR-146a-5p in NSCLC cells

The human NSCLC cell lines (A549 and H460) were obtained from the Type Culture Collection of the Chinese Academy of Sciences, Shanghai, China and cultured as reported [39, 40]. The IRAK1, TRAF6 and EGFR-specific monoclonal antibodies were provided by Santa Cruz Biotechnology, Inc, America. The two cell lines were cultured in Dulbecco’s modified essential medium (DMEM) medium supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen Corp, Grand Island, NY, USA) and penicillin was added to the cell culture following the recommended conditions. All of the NSCLC cells were incubated at 37°C under a humidified 5% CO₂ atmosphere.

NSCLC cells were seeded at a density of 2.5 × 10⁴ cells/well into 24-well plates and cultured at 37°C with 5% CO₂ for 24 h. Cells were transfected with miR-146a-5p mimic, miRNA mimic negative control, miR-146a-5p inhibitor, or miRNA inhibitor negative control (Ambion, Life Technologies Europe B.V.) respectively with Lipofectamine™ 2000 (Cat. No. 11668-019, Invitrogen) based on the manufacturer’s instructions. The cells were transfected daily with the miR-146a-5p mimic or miR-146a-5p inhibitor up to day 10 [41]. After 0, 5 and 10 days of transfection, the expression of miR-146a-5p was detected [42]. Furthermore, the sequences of IRAK1 siRNA, TRAF6 siRNA and EGFR siRNA were as follows: 5'-AAG UUG CCA UCC UCA GCC UCC-3' (IRAK1); 5'EGFR siRNA-CCAGUCAUGAGAAU-3' (TRAF6); 5'GCAGAGTGTAACGGAATAGGTAT-3' (EGFR). And EGFR siRNA was used as positive control. The siRNAs were transfected into NSCLC cells by the same method as above.

RNA extraction and qRT-PCR

qRT-PCR was as described previously [25, 43, 44]. Blocks of clinical FFPE tissues were sec-
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Table 1. The relationship between miR-146a-5p and its targets in NSCLC

<table>
<thead>
<tr>
<th>Targets expression</th>
<th>n</th>
<th>MiR-146a-5p relevant expression (2^{ΔCq})</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRAK1 Negative</td>
<td>37</td>
<td>5.04273±8.402539</td>
<td>3.403</td>
<td>0.002</td>
</tr>
<tr>
<td>IRAK1 Positive</td>
<td>28</td>
<td>0.33421±0.422453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAF6 Negative</td>
<td>31</td>
<td>5.95823±8.908474</td>
<td>3.514</td>
<td>0.001</td>
</tr>
<tr>
<td>TRAF6 Positive</td>
<td>34</td>
<td>0.33041±0.406994</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Absorbance at 490 nm was assessed by a microplate reader.

Cell viability

To further confirm the results of the MTS assay, fluorimetric detection of resorufin (CellTiter-Blue Cell Viability Assay, G8080, Promega, Madison, WI, USA) was applied to detect the cell viability referenced to the manufacturer instructions. An FL600 fluorescence plate reader (Bio-Tek, Winooski, Vermont, USA) was used for fluorimetry (ex: 560 nm/em: 590 nm). Fluorescence data were achieved as the fluorescence of treated sample/mock control × 100 [39, 54-56].

Caspase-3/7 activity detection

Caspase-3/7 activity was detected instantly by a synthetic rhodamine labeled caspase-3/7 substrate (Apo-ONE® Homogeneous Caspase-3/7 Assay, G7790, Promega, Madison, WI, USA) after the measurement of cell viability according to the manufacturer instructions. An FL600 fluorescence plate reader (Bio-Tek, Winooski, Vermont, USA) was used for fluorimetry (ex: 560 nm/em: 590 nm). Fluorescence data were achieved as the fluorescence of treated sample/mock control × 100 [39, 54-56].

Assessment of cell apoptosis

The effects of miR-146a-5p mimic, miR-146a-5p inhibitor, IRAK1 siRNA, TRAF6 siRNA or EGFR siRNA on cell apoptosis and morphology were evaluated by Hoechst 33342 and PI (Sigma-Aldrich, St. Louis, MO) double fluorescent chromatin staining. Briefly, after treatment with miR-146a-5p mimic, inhibitor or siRNA, cells were washed using ice-cold PBS and then cells were stained for 15 min with Hoechst 33342 (1 mg/ml) and PI (1 mg/ml). After that, cells were imaged at a thickness of 5-20 µm. The tissues were dewaxed by ethanol and xylene. Then the total RNA was extracted from tumor sections using the RNeasy FFPE Kit (Qiagen, KJ Venlo, Netherlands) according to the kit instructions. The RNA isolated from each sample was used for complementary DNA synthesis through the TaqMan MicroRNA Reverse Transcription Kit (Cat. No. 4366596, Tideradar Beijing Technology co., Ltd.) based on manufacturer’s protocol. In addition, qRT-PCRs were performed using a LightCycler 480 (Roche, Shanghai). Each PCR cycle included 95°C for 10 seconds, 60°C for 10 seconds and 72°C for 10 seconds [45-47]. The miRNA was normalized to its reference miR-191 (Applied Biosystems Cat. No. 4427975-000490) and miR-103 (Applied Biosystems Cat. No. 4427975-000439) as reported [42, 45-49]. In addition, the quantification of miRNA or mRNA expression was analyzed by Delta Delta Ct method [50, 51].

Evaluation of immunostaining

The expression of IRAK1 and TRAF6 was detected by immunohistochemistry. The IRAK1 and TRAF6 antibody were purchased from Santa Cruz Biotechnology, Inc. USA. The immunohistochemistry procedure was according to the manufacturer’s protocol. The average percentage of positive cells was scored by 2 independent pathologists as follows: 0 (0%); 1 (1-25%); 2 (26-50%); 3 (51-75%); and 4 (76-100%). The staining intensity was evaluated as follows: 0 (negative); 1 (weak); 2 (moderate) and 3 (strong). The percentage and staining intensity score were multiplied as the final pathological scores. The positive staining results were confirmed when the scores ≥ 2 [52, 53].
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Table 2. The relationship between miR-146a-5p and its targets in NSCLC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>n</th>
<th>IRAK1 expression</th>
<th>t</th>
<th>p</th>
<th>TRAF6 expression</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>MiR-146a-5p expression*</td>
<td>Low</td>
<td>33</td>
<td>7 (21.2%)</td>
<td>26 (78.8%)</td>
<td>-5.859</td>
<td><0.001</td>
<td>2 (6.1%)</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>32</td>
<td>30 (93.8%)</td>
<td>2 (6.2%)</td>
<td></td>
<td></td>
<td>29 (90.6%)</td>
</tr>
</tbody>
</table>

*Lung cancer patients were divided into two groups based on the median level of miR-146a-5p expression.

Table 3. Detection of the effect of miR-146a-5p, IRAK1 and TRAF6 on proliferation of A549 cells by using MTS assay

<table>
<thead>
<tr>
<th>Time</th>
<th>0 day Mean ± SD</th>
<th>t</th>
<th>P</th>
<th>5 days Mean ± SD</th>
<th>t</th>
<th>P</th>
<th>10 days Mean ± SD</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank control</td>
<td>99.67±0.577</td>
<td></td>
<td></td>
<td>100.67±1.155</td>
<td></td>
<td></td>
<td>99.00±1.732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative inhibitor control</td>
<td>100.33±1.155</td>
<td>-0.894</td>
<td>0.422</td>
<td>99.67±0.577</td>
<td>1.342</td>
<td>0.422</td>
<td>100.67±2.082</td>
<td>-1.066</td>
<td>0.346</td>
</tr>
<tr>
<td>MiR-146a-5p inhibitor</td>
<td>100.00±1.000</td>
<td>0.378</td>
<td>0.725</td>
<td>103.33±1.155</td>
<td>-4.919</td>
<td>0.008</td>
<td>111.67±2.517</td>
<td>-5.834</td>
<td>0.004</td>
</tr>
<tr>
<td>Negative mimic control</td>
<td>100.67±2.082</td>
<td>0.378</td>
<td>0.725</td>
<td>96.00±5.196</td>
<td>1.519</td>
<td>0.204</td>
<td>82.33±3.512</td>
<td>8.141</td>
<td>0.001</td>
</tr>
<tr>
<td>MiR-146a-5p mimic</td>
<td>99.33±0.577</td>
<td>-0.894</td>
<td>0.422</td>
<td>99.00±1.000</td>
<td>0.204</td>
<td>0.802</td>
<td>82.33±2.309</td>
<td>7.350</td>
<td>0.002</td>
</tr>
<tr>
<td>Negative siRNA control</td>
<td>101.33±1.528</td>
<td>0.267</td>
<td>0.802</td>
<td>90.67±5.132</td>
<td>2.761</td>
<td>0.051</td>
<td>82.33±2.508</td>
<td>9.950</td>
<td>0.001</td>
</tr>
<tr>
<td>IRAK1 siRNA</td>
<td>101.33±1.528</td>
<td>0.267</td>
<td>0.802</td>
<td>90.67±5.132</td>
<td>2.761</td>
<td>0.051</td>
<td>82.33±2.508</td>
<td>9.950</td>
<td>0.001</td>
</tr>
<tr>
<td>TRAF6 siRNA</td>
<td>101.33±1.528</td>
<td>0.267</td>
<td>0.802</td>
<td>90.67±5.132</td>
<td>2.761</td>
<td>0.051</td>
<td>82.33±2.508</td>
<td>9.950</td>
<td>0.001</td>
</tr>
<tr>
<td>EGFR siRNA</td>
<td>101.33±1.528</td>
<td>0.267</td>
<td>0.802</td>
<td>90.67±5.132</td>
<td>2.761</td>
<td>0.051</td>
<td>82.33±2.508</td>
<td>9.950</td>
<td>0.001</td>
</tr>
</tbody>
</table>

t value was obtained as compared to negative control at same time.

Figure 1. The correlation between miR-146a-5p and IRAK1 or TRAF6. A. The miR-146a-5p relevant expression was negatively correlated with IRAK1 (r=-0.732, P<0.001) and TRAF6 (r=-0.846, P<0.001). Furthermore, the expression of IRAK was positively associated with TRAF6 (r=0.831, P<0.001). B. The miR-146a-5p expression (n%) was negatively correlated with IRAK1 and TRAF6.

Western blot analysis

In this study, Western blot was applied to detect EGFR, IRAK1 and TRAF6 protein expression in NSCLC cells. Firstly, the cells were washed with PBS in a 6-well plate and lysed in a buffer which contains 5 mM EDTA (ph 8), 5% 2-mercaptoeth-
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Statistical analysis

The expression of miR-146a-5p, IRAK1 and TRAF6 between the two samples was evaluated by Student’s t test. The summary statistics were presented as the mean ± standard deviation (Mean ± SD). The relationships between miR-146a-5p expression and IRAK1 and TRAF6 were evaluated by Spearman’s rank correlation. A P<0.05 was regarded to be statistically significant (two sides) with SPSS 20.0. In addition, all the experiments were operated with three repetitions.

Results

Correlation between miR-146a-5p and IRAK1 or TRAF6

Among the 65 NSCLC tissue samples, the level of miR-146a-5p was remarkably up-regulated...
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Cell growth effect of miR-146a-5p, IRAK1 and TRAF6 in NSCLC cells

MTS assay, fluorimetric resorufin viability assay and Hoechst 33342/PI double staining assay were performed to evaluate the proliferation of NSCLC cells, respectively. The cell growth effect of A549 and H460 cells at 5 and 10 days after transfection was analyzed. In results of MTS assay, at 5 days after transfection with the miR-146a-5p inhibitor, A549 cell growth was slightly increased in miR-146a-5p inhibitor group than in negative inhibitor control group (103.33±1.155 vs. 99.67±0.577, P=0.008). Furthermore, to further confirm the correlation between miR-146a-5p and IRAK1 or TRAF6, we performed Spearman’s rank correlation test. The results showed that the miR-146a-5p expression was adversely related to IRAK1 (r=-0.732, P<0.001) and TRAF6 (r=-0.846, P<0.001, Figure 1). In addition, the IRAK expression was positively associated with TRAF6 in NSCLC (r=0.831, P<0.001, Figure 1).

in the IRAK1 negative group than in the IRAK1 positive group (5.04273±8.402539 vs. 0.33421±0.422453, P=0.002, Table 1). Consistent with IRAK1, the miR-146a-5p expression was higher in the TRAF6 negative group (5.95823±8.908474) than in the TRAF6 positive group (0.33041±0.406994, P=0.001, Table 1). Then, to further verify these results, the miR-146a-5p expression was divided into high and low expression group based on the median level of miR-146a-5p. As results, in high miR-146a-5p expression group, the negative rate of IRAK1 expression was 93.8% and the negative rate of TRAF6 expression was 90.6% (both P<0.001, Table 2). Similarly, in low miR-146a-5p expression group, the positive rate of IRAK1 expression was 78.8% and the positive rate of TRAF6 expression was 93.9% (both P<0.001, Table 2). Furthermore, to further confirm the correlation between miR-146a-5p and IRAK1 or TRAF6, we performed Spearman’s rank correlation test. The results showed that the miR-146a-5p expression was adversely related to IRAK1 (r=-0.732, P<0.001) and TRAF6 (r=-0.846, P<0.001, Figure 1). In addition, the IRAK expression was positively associated with TRAF6 in NSCLC (r=0.831, P<0.001, Figure 1).

Figure 3. Detection of the effect of miR-146a-5p, IRAK1 and TRAF6 on proliferation of NSCLC cells by using cell viability assay. The NSCLC cells were transfected with negative inhibitors, miR-146a-5p inhibitors, negative mimic, miR-146a-5p mimic, negative siRNA, IRAK1 siRNA, TRAF6 siRNA and EGFR siRNA, respectively. A. A549 lung cancer cells; B. H460 lung cancer cells (*P<0.05, **P<0.01).
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Furthermore, these results further verified the reverse relationship between miR-146a-5p and its target genes IRAK1 and TRAF6. Over, these results further verified the reverse relationship between miR-146a-5p and its target genes IRAK1 and TRAF6.

Cell apoptosis effect of miR-146a-5p, IRAK1 and TRAF6 in NSCLC cells

Hoechst 33342 and PI double fluorescent staining assay was utilized to evaluate the
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Table 4. Detection of the effect of miR-146a-5p, IRAK1 and TRAF6 on apoptosis of A549 cells by using Hoechst 33342 and PI double fluorescent staining

<table>
<thead>
<tr>
<th>Time</th>
<th>0 day Mean ± SD</th>
<th>t</th>
<th>p</th>
<th>5 days Mean ± SD</th>
<th>t</th>
<th>p</th>
<th>10 days Mean ± SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank control</td>
<td>1.02±0.035</td>
<td></td>
<td>0.01</td>
<td>1.01±0.017</td>
<td></td>
<td>0.006</td>
<td>1.00±0.006</td>
<td></td>
<td>0.374</td>
</tr>
<tr>
<td>Negative inhibitor control</td>
<td>1.00±0.000</td>
<td>1.00</td>
<td>0.374</td>
<td>1.02±0.040</td>
<td>-0.525</td>
<td>0.627</td>
<td>1.00±0.000</td>
<td>-1.000</td>
<td>0.374</td>
</tr>
<tr>
<td>MiR-146a-5p inhibitor</td>
<td>0.99±0.000</td>
<td>/</td>
<td>/</td>
<td>0.99±0.035</td>
<td>0.970</td>
<td>0.387</td>
<td>0.96±0.058</td>
<td>1.300</td>
<td>0.263</td>
</tr>
<tr>
<td>Negative mimic control</td>
<td>1.01±0.017</td>
<td></td>
<td></td>
<td>1.02±0.040</td>
<td></td>
<td>1.01±0.017</td>
<td>1.02±0.035</td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>MiR-146a-5p mimic</td>
<td>1.04±0.032</td>
<td>-1.265</td>
<td>0.275</td>
<td>1.13±0.121</td>
<td>-1.498</td>
<td>0.208</td>
<td>1.18±0.056</td>
<td>-5.050</td>
<td>0.007</td>
</tr>
<tr>
<td>Negative siRNA control</td>
<td>1.01±0.071</td>
<td></td>
<td></td>
<td>1.02±0.035</td>
<td></td>
<td></td>
<td>1.02±0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRAK1 siRNA</td>
<td>1.04±0.032</td>
<td>-0.519</td>
<td>0.631</td>
<td>1.30±0.081</td>
<td>-5.581</td>
<td>0.005</td>
<td>1.93±0.236</td>
<td>-6.613</td>
<td>0.003</td>
</tr>
<tr>
<td>TRAF6 siRNA</td>
<td>1.017±0.038</td>
<td>-0.72</td>
<td>0.946</td>
<td>2.61±0.518</td>
<td>-5.305</td>
<td>0.006</td>
<td>4.72±1.366</td>
<td>-4.695</td>
<td>0.009</td>
</tr>
<tr>
<td>EGFR siRNA</td>
<td>1.01±0.0902</td>
<td>0.101</td>
<td>0.925</td>
<td>1.76±0.228</td>
<td>-5.580</td>
<td>0.005</td>
<td>2.26±0.072</td>
<td>-26.849</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* t value was obtained as compared to negative control at same time.

apoptosis affected by miR-146a-5p, IRAK1 and TRAF6 in A549 and H460 cells. The apoptosis rate was 0.96±0.058 folds in A549 cells after transfection with miR-146a-5p inhibitor of 10 days, less than negative inhibitor control group (1.00±0.000, Table 4). However, after transfection with the miR-146a-5p inhibitor for 0, 5, 10 days, no statistically significance was observed in NSCLC cells, which indicates that miR-146a-5p inhibitor could induce proliferation, but no obvious change was observed on cell apoptosis. In contrary, after transfection with miR-146a-5p mimics on the 10th day, the apoptosis rate was increased compared to negative mimic control (1.18±0.0557 vs. 1.010±0.017, p=0.007). But no obvious change was observed on 5th day (Figure 5A). A similar effect on apoptosis could be observed in H460 cells (Figure 5B). Furthermore, after knockdown of IRAK1 and TRAF6, the apoptosis rate was remarkably induced. In A549 cells, TRAF6 siRNA group showed the most obvious effect on apoptosis induction whereas in H460 cells, EGFR siRNA group showed the most potent effect (Table 4, Figure 5). Besides, the influence on apoptosis was verified microscopically via Hoechst 33342 and PI double fluorescent staining (Figure 6).

In addition, the caspase-3/7 assay was used to validate whether miR-146a-5p could induce apoptosis. The results showed that miR-146a-5p inhibitor could not increase caspase-3/7 activity. However, miR-146a-5p mimic could significantly enhance caspase-3/7 activity in A549 cells and H460 cells, but the effect was much less than that in IRAK1 or TRAF6 siRNA group (Figure 7).

MiR-146a-5p causes inhibition of IRAK1 and TRAF6 by Western blot in NSCLC cells

To further explore the possible cellular signaling affected by miR-146a-5p, we transfected miR-146a-5p inhibitor and mimic into NSCLC cells. As results, we found that IRAK1, TRAF6 and EGFR were all downregulated after miR-146a-5p mimic transfection similar to IRAK1 siRNA, TRAF6 siRNA and EGFR siRNA in NSCLC cells (data not shown). To confirm the effects of miR-146a-5p on IRAK1 and TRAF6, we transfected miR-146a-5p inhibitor into NSCLC cells and we found that inhibition of miR-146a-5p increased the levels of IRAK1, TRAF6 and EGFR (data not shown). These results indicated that miR-146a-5p play effects in NSCLC via regulating IRAK1 and TRAF6 signaling.

IRA1K and TRAF6 are identified as direct targets of miR-146a-5p in NSCLC cells

MIRDB (available online: http://www.mirdb.org/) and Targetscan (available online: http://www.targetscan.org/) were applied to find the potential targets of miR-146a-5p. And IRAK1 and TRAF6 were selected as the candidate genes (Figure 8). Then, the dual-luciferase reporter assay was conducted and miR-146a-5p was confirmed to directly bind to the 3'-UTR of IRAK1 and TRAF6 mRNAs (data not shown).

Discussion

Lung cancer is a common disease which threatens human health seriously. An increasing number of studies have revealed that abnormal miRNAs expression is related to the develop-
IRAK1 and TRAF6 promote NSCLC progression modulated by antitumor miR-146a-5p

Identically increased in lung cancer compared with that in normal lung tissues. Moreover, the expression of IRAK1 and TRAF6 were positively related to clinical tumor size, TNM stage and lymph node metastasis. In the present study, qRT-PCR and immunohistochemistry were applied to verify the correlation of miR-146a-5p and IRAK1 or TRAF6. Besides, functional experiments in vitro were performed to explore the SALL4 protein expression.

Previously, we found that miR-146a-5p was pronouncedly decreased in both NSCLC cells and tumor tissues [25]. And we performed functional experiments in vitro to verify that miR-146a-5p could inhibit cell growth and migration and induce cell apoptosis via targeting EGFR and NF-κB signaling. Currently, the EGFR-targeted therapy was applied to clinical therapy gradually, and it might benefit the patients with positive EGFR expression. However, resistance to EGFR-targeted therapies in some lung cancer patients was appeared after treating with EGFR-targeted therapy [61]. Thus, it is imperative to search early diagnostic and novel target for molecular targeted therapy of lung cancer.

IRAK1 and TRAF6 are identified as direct targets of miR-146a-5p by using MiRDB and Targetscan prediction software. In our previous studies, a microarray including 365 lung cancer cases and 30 normal lung cases was constructed to investigate the clinicopathological significance and protein expression of IRAK1 and TRAF6 [52, 53]. The results showed that the IRAK1 and TRAF6 expression were evidently increased in lung cancer compared with that in normal lung tissues. Moreover, the expression of IRAK1 and TRAF6 were positively related to clinical tumor size, TNM stage and lymph node metastasis. In the present study, qRT-PCR and immunohistochemistry were applied to verify the correlation of miR-146a-5p and IRAK1 or TRAF6. Besides, functional experiments in vitro were performed to explore the

Figure 5. Detection of the effect of miR-146a-5p, IRAK1 and TRAF6 on apoptosis of NSCLC cells by using Hoechst 33342 and PI double fluorescent staining assay. The NSCLC cells were transfected with negative inhibitors, miR-146a-5p inhibitors, negative mimic, miR-146a-5p mimic, negative siRNA, IRAK1 siRNA, TRAF6 siRNA and EGFR siRNA, respectively. A. A549 lung cancer cells; B. H460 lung cancer cells (*P<0.05, **P<0.01).
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Effect of miR-146a-5p and IRAK1 or TRAF6 on growth and apoptosis at the cellular level. As results, an inverse relationship between miR-146a-5p expression and IRAK1 or TRAF6 was identified. Furthermore, MTS assay, fluorometric resorufin viability assay and Hoechst 33342/PI double staining assay revealed that the proliferation of NSCLC cells was significantly increased after transfection with miR-146a-5p inhibitor whereas a remarkably reduction in growth was noted after transfection with miR-146a-5p mimic. After silencing the expression of IRAK1 and TRAF6, the proliferation in NSCLC cells was all inhibited which further verified the negatively correlation between miR-146a-5p and IRAK1 or TRAF6. In addition, Hoechst 33342 and PI double fluorescent staining assay and caspase-3/7 activity assay were performed to evaluate the effect of miR-146a-5p and IRAK1 or TRAF6 on cell apoptosis in NSCLC. The results showed that miR-146a-5p mimic could enhance cell apoptosis. And after knockdown of IRAK1 and TRAF6, the cell apoptosis was remarkably induced which further verified our results on the cellular level. To further demonstrate the results of prediction software, a dual-luciferase reporter assay was conducted and the results revealed that miR-146a-5p directly targeted the 3’-UTR of IRAK1 and TRAF6.

Together with the previous study with miR-146a-5p and IRAK1 or TRAF6 on NSCLC, we demonstrated that miR-146a-5p could act as a suppressor in NSCLC and inhibit proliferation and induce apoptosis of NSCLC cells via targeting IRAK1 and TRAF6. The effect of miR-146a-5p and its targets on the growth and apoptosis of NSCLC cells could offer novel evidence on prospective therapeutic targets in the treatment of NSCLC.

Acknowledgements

The study was supported by a Fund the National Natural Science Foundation of China (NSFC81360327, NSFC81560469) and the Natural Science Foundation of Guangxi, China (2015GXNSFCA139009).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xiao-Hua Hu, Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Auto-
IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

Figure 7. Detection of the effect of miR-146a-5p, IRAK1 and TRAF6 on apoptosis of NSCLC cells by using caspase-3/7 assay. The NSCLC cells were transfected with negative inhibitors, miR-146a-5p inhibitors, negative mimic, miR-146a-5p mimic, negative siRNA, IRAK1 siRNA, TRAF6 siRNA and EGFR siRNA, respectively. A. A549 lung cancer cells; B. H460 lung cancer cells (*P<0.05, **P<0.01).

Figure 8. Complementary sequences between miR-146a-5p and IRAK1 or TRAF6.

References

IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

IRAK1 and TRAF6 promotes NSCLC progression modulated by antitumor miR-146a-5p

