Original Article

Overexpression of miR-599 is associated with metastasis in colorectal cancer via inhibition of SATB2

Jing-Feng Gu, Gui-Qi Wang, Ying-Chao Gao, Yong-Jun Dai

Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

Received March 29, 2017; Accepted May 24, 2017; Epub June 1, 2017; Published June 15, 2017

Abstract: Background: Accumulating evidence supports that aberrantly expressed microRNAs (miRNAs) are associated with tumor development and progression. The aim of this study was to investigate the potential clinical value of miR-599 as a molecular prognostic biomarker and to explore the mechanism underlying its function. Methods: The expression level of miR-599 in CRC tissues and cell lines was determined by quantitative real-time PCR and its clinical value was assessed using the Kaplan-Meier method and the Cox proportional hazards mode. Moreover, the biological functions of miR-599 were investigated in vitro by performing cell migration and invasion assays, as well as western blot analysis, on cells in which miR-599 was downregulated through transfection with a specific inhibitor. Finally, luciferase reporter assays were conducted to confirm target associations. Results: MiR-599 expression was significantly higher in CRC tissues than in corresponding non-tumor tissues. Moreover, it was strongly associated with tumor aggressiveness, and multivariate analysis identified it as an independent prognostic factor in CRC patients. The in vitro study showed that miR-599 promotes cell migration and invasion, and induces epithelial-mesenchymal transition in CRC cell lines. Furthermore, SATB2 was identified as a direct target of miR-599 in CRC cells. Conclusions: We for the first time show that miR-599 is upregulated in CRC tissues and cells and might serve as a prognostic marker for this cancer type. Moreover, miR-599 plays a pivotal role in CRC metastasis by negatively regulating SATB2 expression, suggesting that it might represent a potential efficacious therapeutic target in the treatment of CRC.

Keywords: Colorectal cancer, miR-599, metastasis, SATB2, prognosis

Introduction

Colorectal cancer (CRC) is among the most common cancer types and constitutes one of the most frequent causes of cancer-related deaths worldwide [1], with tumor invasion and metastasis being the main causes of mortality among patients [2]. The development of CRC is considered a multistage process involving genetic changes that lead to the activation of oncogenes and the inactivation of tumor suppressor genes [3]. Although various mechanisms underlying these processes have been elucidated and treatment has improved, approximately half of CRC patients still develop metastases after operation [4]. Thus, a deeper understanding of the molecular mechanisms underlying CRC metastasis is required, as it would facilitate the development of novel therapeutic strategies for metastatic CRC patients.

MicroRNAs (miRNAs) are small (20-24 nucleotides in length) endogenous non-coding RNAs that post-transcriptionally regulate the expression of multiple target genes by binding to complementary sequences, mainly in the 3'-untranslated regions (3'-UTRs) [5]. They have been shown to play a critical role in tumor pathogenesis, participating in cell proliferation, metastasis, and differentiation [6-8]. With respect to CRC, several miRNAs involved in its development and progression have been identified. After resection of colorectal liver metastasis, short-term survivors exhibited significantly higher miR-203 levels in tumor tissues compared to long-term survivors [9]. Aberrant miR-296 expression was detected in CRC tissues and cells, in which it could regulate the epithelial-mesenchymal transition (EMT) and exerted an anti-metastatic effect [10]. A study of liver metastatic lesions and primary CRC tumors
MiR-599 promotes CRC metastasis by inhibiting SATB2

showed that the expression of another miRNA, miR-487b, was suppressed in the metastatic tissues, while this miRNA had the ability to inhibit the proliferation and, more evidently, the invasion ability of CRC cells [11]. Recently, the dysregulation of miR-599 was reported to be involved in the carcinogenesis of several carcinomas [12, 13]. However, to date, there is no literature on its role in CRC.

To explore whether miR-599 affects metastasis in CRC, we analyzed its expression signature and discovered that miR-599 expression was markedly increased in CRC tissues and cell lines. Moreover, miR-599 upregulation was a poor prognosis marker in patients with CRC. Subsequent research work revealed that the suppression of miR-599 inhibited the migration, invasion, and EMT of CRC cells in vitro. We also searched for potential target genes of miR-599 based on structure complementation and speculated that the mRNA of the SATB2 gene (special AT-rich sequence-binding protein 2), whose deregulation has been previously shown to be strongly associated with the prognosis of CRC [14], was a direct miR-599 target. Further experimentation using CRC cells confirmed that miR-599 directly bound to the 3'-UTR of SATB2 and regulated its expression. These findings elucidate the role of miR-599 in CRC and suggest that it may be a potential prognostic biomarker and an effective therapeutic target for the treatment of CRC.

Materials and methods

Tissue samples

Pairs of primary colorectal cancer tissues and matched non-tumor tissues were obtained from 112 histologically diagnosed CRC patients in the Department of Gastrointestinal Surgery in The first hospital of Hebei Medical University from 2010 to 2013. Patients who had received pre-surgical immunotherapy, chemotherapy, or radiotherapy were excluded. All specimens were frozen in liquid nitrogen immediately after resection and the medical history of all patients was recorded. All experiments were performed in duplicate and the following reaction conditions: 94°C for 2 min, followed by 40 cycles at 94°C for 10 s, 60°C for 1 min, and 30 s at 72°C. The following primers were used: miR-599 RT, GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATA CGACgtttgat; miR-599 forward, GTTGTGTCAGTCTA; miR-599 reverse, GTGCAGGGTCCGAGGT; U6 forward, CT- CGCTTCGGCAGCACA; U6 reverse, AACGCTTCACGAATTTGCGT; SATB2 forward, GCAGTGACGGCTCTCTT; SATB2 reverse, CACCTTCCACAGCTTGATTATTCC; GAPDH forward, GGTATCGTGGAAGGACTC; GAPDH reverse, GGGATGGATGTTCTGGAGAG. U6 and GAPDH were used as internal controls. The relative quantification
MiR-599 promotes CRC metastasis by inhibiting SATB2

Western blot analysis

Total protein was extracted from cells using 1% RIPA Lysis Buffer (Beyotime, Jiangsu, China) and quantified with the Bicinchoninic Acid Protein Assay Kit (Beyotime). After separation by SDS-PAGE, proteins were transferred onto PVDF membranes and probed with specific primary antibodies against SATB2, MMP2, MMP9, E-cadherin, vimentin, and GAPDH (Abcam, Cambridge, MA, USA) overnight at 4°C. Membranes were then washed with TBS-Tween (TBST) and incubated with horseradish peroxidase-labeled secondary antibodies (Abcam) for 2 h. Signals were visualized using an ECL detection reagent (Beyotime) and quantified with the Quantity One v4.4 software (Bio-Rad, Hercules, CA, USA).

Cell migration and invasion assays

CRC cells transfected with the corresponding vectors were seeded into 6-well plates. A cell-scratch spatula was used to create a scratch in the confluent cell monolayer. Plates were washed with PBS to remove cellular debris, followed by incubation at 37°C for 48 h. Immediately (0 h) and 48 h after wounding, plates were examined and photographed under a microscope (Olympus, Tokyo, Japan).

Transwell chambers coated with Matrigel (1:6 dilution) were used for the invasion assays (BD Biosciences, Franklin Lakes, NJ, USA). Following transfection, 5 × 10⁶ CRC cells suspended in 100 μL serum-free medium were seeded onto the upper wells, while 500 μL DMEM containing...
MiR-599 promotes CRC metastasis by inhibiting SATB2

Table 2. Univariate and multivariate cox regression analysis of risk factors for overall survival

<table>
<thead>
<tr>
<th></th>
<th>Univariate analysis</th>
<th></th>
<th></th>
<th></th>
<th>Multivariate analysis</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>P-value</td>
<td>HR</td>
<td>95% CI</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.83</td>
<td>0.46-1.39</td>
<td>0.466</td>
<td>1.09</td>
<td>0.79-1.33</td>
<td>0.617</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>0.79</td>
<td>0.43-1.07</td>
<td>0.296</td>
<td>1.25</td>
<td>0.93-1.57</td>
<td>0.208</td>
<td></td>
</tr>
<tr>
<td>Tumor site</td>
<td>0.94</td>
<td>0.83-1.07</td>
<td>0.343</td>
<td>1.98</td>
<td>1.14-3.65</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Tumor differentiation</td>
<td>1.05</td>
<td>0.87-1.18</td>
<td>0.132</td>
<td>1.47</td>
<td>1.06-2.92</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>T-stage</td>
<td>1.63</td>
<td>1.10-3.49</td>
<td>0.027*</td>
<td>0.93</td>
<td>1.01-1.20</td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td>N-stage</td>
<td>2.02</td>
<td>1.37-5.50</td>
<td>0.037*</td>
<td>1.25</td>
<td>0.93-1.57</td>
<td>0.208</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>3.63</td>
<td>1.81-8.29</td>
<td>< 0.001*</td>
<td>1.98</td>
<td>1.14-3.65</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>miR-599 expression</td>
<td>2.35</td>
<td>1.80-3.06</td>
<td>0.001*</td>
<td>1.47</td>
<td>1.06-2.92</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant (P < 0.05).

Log-rank test. Multivariate survival analysis was performed on all parameters that were found to be significant in the univariate analysis using the Cox regression model. All statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL, USA). Graphs were generated with GraphPad Prism v5.0 (GraphPad Software, La Jolla, CA, USA).

Results

Upregulated miR-599 indicates poor prognosis in patients with CRC

We performed qRT-PCR to determine the expression level of miR-599 in sample tissues of patients with CRC. Results showed that miR-599 was expressed at significantly higher levels in CRC tissues compared to adjacent normal colonic tissues (P < 0.05; Figure 1A). Furthermore, we compared the expression of miR-599 in samples of metastatic and non-metastatic tissues and, unexpectedly, found miR-599 to be upregulated in the former compared to the latter (P < 0.05; Figure 1B). Therefore, we hypothesized that the level of miR-599 expression was correlated with the outcome of CRC patients and proceeded to analyze the relationship between the clinico-pathological characteristics of CRC patients and miR-599 expression (Table 1). There was no significant association of miR-599 expression with age, gender, tumor site, or differentiation, whereas miR-599 levels were strongly correlated with tumor invasion (P = 0.033), lymph node metastasis (P = 0.016), and distant metastasis (P = 0.001). Moreover, high miR-599 expression was a poor prognosis marker in CRC patients with a shorter median survival (37.49 ± 2.23 vs. 64.52 ± 2.56, P < 0.001;
MiR-599 promotes CRC metastasis by inhibiting SATB2

Figure 2. MiR-599 promotes metastasis of CRC cells in vitro. A: Relative miR-599 expression levels in four CRC cell lines (LOVO, HCT116, SW480, and SW620) and the human normal colorectal cell line, NCM460. B: Relative expression of miR-599 in LOVO and SW620 cells transfected with a miR-599 inhibitor. C: Wound-healing analysis of LOVO and SW620 cells transfected with the miR-599 inhibitor or miR-NC. D: LOVO and SW620 invading cells stained with 0.1% crystal violet, counted 48 h after transfection. The number of invading cells was determined from three replicate wells and expressed as mean ± SD. E: Western blot analysis of the expression levels of two invasion-related molecules, MMP2 and MMP9, and two epithelial-mesenchymal transition (EMT) markers, E-cadherin and vimentin, after the suppression of miR-599. *P < 0.05 vs. NCM460 cells; **P < 0.01 vs. cells transfected with miR-NC.
MiR-599 promotes CRC metastasis by inhibiting SATB2

To validate whether miR-599 targets the 3'-UTR of SATB2 mRNA, we queried candidate target genes from the human microRNA database and found that SATB2 was a putative target of miR-599 (Figure 4A). To confirm our hypothesis, we performed a luciferase assay and found that the increased expression of miR-599 reduced the luciferase activity in LoVo cells transfected with a reporter plasmid containing the 3'-UTR sequence of the SATB2 mRNA, while no change was observed in cells transfected with a plasmid containing a scrambled sequence (Figure 4B). Subsequently, we analyzed SATB2 expression, at both the mRNA and the protein level, in LoVo cells transfected with the miR-599 inhibitor. Results showed that the downregulation of miR-599 resulted in a significant increase in both the mRNA (Figure 4C) and protein (Figure 4D) levels of SATB2. Taken together, these findings indicated that miR-599 regulates SATB2 expression by targeting its 3'-UTR.

Discussion

In recent years, numerous studies have reported on the emerging roles of miRNAs during carcinogenesis. Hsa-miR-599, located at the 8q22.2 locus of the human genome, is a newly identified tumor-related miRNA and only a few studies have investigated its exact role in cancers [13, 16]. Tian et al. found that miR-599 was upregulated in lung cancer cells; their subsequent biological analysis indicated that it affected cell proliferation, migration, and invasion [16]. However, another study reported miR-599 to be downregulated in hepatocellular carcinoma tissues and cell lines, while the restoration of its expression inhibited cell proliferation, migration, and invasion [17]. This dispar-
MiR-599 promotes CRC metastasis by inhibiting SATB2

Figure 4. SATB2 is a direct target of miR-599 in CRC. A: The putative target location of miR-599 in the 3'-UTR of SATB2 as predicted by miRBase. B: Luciferase activity of LOVO cells transfected with a reporter plasmid carrying the 3'-UTR of SATB2 or a scrambled sequence, following the binding of miR-599. C: Relative expression of SATB2 mRNA in LOVO cells transfected with a miR-599 inhibitor or miR-NC. D: Relative expression of the SATB2 protein as assessed by western blot analysis.

Figure 4.

The above findings encouraged us to further investigate the molecular mechanisms underlying the role of miR-599 in CRC. Our results showed that it regulates the migration, invasion, and EMT of CRC cells. All the above results suggested that miR-599 promotes CRC metastasis and may constitute a novel prognostic marker in CRC.

We also identified SATB2 as a downstream target of miR-599. SATB2, which was originally discovered as a transcription factor playing an important role in the regulation of bone development and the differentiation of osteoblasts [18], is an important DNA-binding protein involved in transcriptional regulation and chromatin remodeling [18-20]. A more recent study identified it as a highly tissue type-specific protein that is predominantly expressed in the glandular cells of the lower gastrointestinal tract and in CRC [21], while another study reported that the downregulation of SATB2 is associated with metastasis and poor prognosis in CRC [22]. Several miRNAs can reportedly regulate the expression of SATB2 by directly targeting the SATB2 3'-UTR.
MiR-599 promotes CRC metastasis by inhibiting SATB2

targeting its 3'-UTR. It has been shown that miR-182 facilitates tumor growth and metastasis of CRC by suppressing SATB2 expression [23]. MiR-31 is upregulated in CRC and can bind to the 3'-UTR of SATB2 mRNA, subsequently inhibiting both the mRNA and protein expression of SATB2 [24]. Recently, Sun et al. demonstrated the involvement of a miR-449a-SATB2 negative feedback loop in the development of CRC [25]. Accordingly, the dual-luciferase reporter assays and western blots that we performed suggested that miR-599 could also regulate SATB2 expression by directly targeting its mRNA. The downregulation of SATB2 seems to be one of a number of important downstream mechanisms through which miR-599 plays a role in CRC.

To sum up, our integrated approach demonstrated that the upregulation of miR-599 is involved in the progression of CRC, as its expression level was significantly associated with the aggressiveness of CRC in the studied patients, indicating a poor prognosis. On the other hand, the suppression of miR-599 upregulated SATB2 expression, inhibited CRC cell migration and invasion, and prevented EMT in vitro, thus it may be a valid approach for molecular targeted therapy of CRC.

Acknowledgements

This study was supported by the funded projects Health and Planning Commission of Hebei Province (20160203).

Disclosure of conflict of interest

None.

Address correspondence to: Gui-Qi Wang, Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang 050000, Hebei, China. Tel: +86-13582810218; E-mail: wanggqgas1@163.com

References

MiR-599 promotes CRC metastasis by inhibiting SATB2

