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In the mRNA microarray analysis, we found that 
expression profiles of genes such as Egr1, 
ERK2, CXCL1, EFNA1, MMP2, VEGFA and VE- 
GFC are changed under H/R conditions com-
pared to the normoxic conditions (Table 5). 
These genes are closely related to vasculature 
development, blood vessel morphogenesis, 

way. Figure 4C shows that down-regulated ERK 
was companied with reduction in VEGF, MMPs, 
and IL-8. ERK pathway also regulates prolifera-
tion and survival of endothelial cells. The down-
regulation after miR-132 expression interrup-
tion probably inhibited cell proliferation and 
caused cell death (Figure 4D). 

Figure 3. Association between miR-132 and vasculature development. mRNA expression profile microarray screen-
ing was performed, which identified more than 30 thousand of mRNAs that involves diverse kinds of biological pro-
cesses, to understand regulatory effect of miR-132 in HRMECs in hypoxia. HRMECs were incubated under hypoxia 
for 6 h, followed by culture under normoxia conditions for additional 6 h. These processes were referred as hypoxia/
reoxygenation (H/R). Before the H/R, HRMECs were transfected with miR-132 inhibitor or the negative control. A. 
Heatmap of the genes differentially expressed in the three groups cells. Red represents upregulated mRNAs, but 
blue indicates downregulated mRNAs. B. A volcano plot for the visualization of differentially expressed mRNAs with 
significance cut off P < 0.005 and fold-change > 1.5 symmetrically in the cells (n = 4). C. Numbers of genes that 
were changed among groups. D. Fold changes of genes between each groups. In the horizontal axis, positive num-
bers indicate the folds of gene up-regulation, while negative numbers indicate the folds of gene down-regulation. 

Table 1. Top 10 altered biological processes in GO analysis after 
H/R treatments (B vs. A)

Geneset name Genes in 
overlap (k) p value

GO:0001944~vasculature development 96 2.75E-11
GO:0001586~blood vessel development 94 3.68E-11
GO:0042127~regulation of cell proliferation 232 4.89E-10
GO:0010941~regulation of cell death 236 2.14E-10
GO:0048514~blood vessel morphogenesis 82 3.57E-10
GO:0043067~regulation of programmed cell death 234 4.23E-10
GO:0010033~response to organic substance 212 4.73E-10
GO:0042981~regulation of apoptosis 231 7.52E-10
GO:0051270~regulation of cell motion 76 8.36E-10
GO:0030334~regulation of cell migration 68 2.51E-09
A: control; B: culture under H/R conditions. P < 0.05 indicates a statistically signifi-
cant difference.

Table 2. Top 10 altered biological processes in GO analysis after 
the inhibition of miR-132 expression under H/R conditions (C vs. B)

Geneset name Genes in 
overlap (k) p value

GO:0007049~cell cycle 237 7.90E-21
GO:0022403~cell cycle phase 148 7.38E-20
GO:0000279~M phase 122 6.33E-18
GO:0022402~cell cycle process 175 5.68E-16
GO:0000278~mitotic cell cycle 127 2.08E-15
GO:0048285~organelle fission 90 4.95E-15
GO:0007067~mitosis 86 3.04E-14
GO:0000280~nuclear division 86 3.04E-14
GO:0000087~M phase of mitotic cell cycle 87 3.28E-14
GO:0051301~cell division 103 3.59E-13
B: culture under H/R conditions; C: silencing miR-132 prior to culture under H/R 
conditions. P < 0.05 indicates a statistically significant difference.

and proliferation and migra-
tion of microvascular endo-
thelial cells. Inhibition of  
miR-132 expression changed 
their expression levels. 

Interruption of miR-132 ex- 
pression under H/R condi-
tions led to changes of sig- 
naling pathways related to 
angiogenesis, as indicated by 
KEGG pathway enrichment 
analysis. VEGF pathway is 
critical for sustained angio-
genesis. VEGF is regulated by 
HIF-α and HIF-β. Results sh- 
owed that suppressing miR-
132 expression impaired VE- 
GF expression compared to 
H/R group, although HIF-α 
and HIF-β were up-regulated 
(Figure 4A). H/R is known as 
a leading cause for oxidative 
stress. Oxidative stress tran-
scriptionally regulates genes 
and further impacts endothe-
lial proliferation and migra-
tion (through degradation of 
extracellular matrix and che-
moattraction of endothelial 
cells), thus promoting angio-
genesis. Suppressing miR-
132 expression impaired up-
regulation of VEGF, MMPs, 
and IL-8 that were induced by 
oxidative stress (Figure 4B). 
VEGF, MMPs, and IL-8 are 
also regulated by ERK path-
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Effect of miR-132 on expression of genes 
related to RNV

To further understand the regulatory effects  
of miR-132 on expression of genes including 
Egr1, ERK2, CXCL1, EFNA1, MMP2, VEGFA and 
VEGFC, qRT-PCR and western blot assays were 
performed after indicated treatments. As sh- 
own in Figure 5A, Egr1, ERK2, CXCL1, MMP2, 
VEGFA and VEGFC were up-regulated in HRM- 
ECs under HR conditions (P < 0.05), but EFNA1 
expression level was not affected (data not 
shown). Depletion of miR-132 expression level 
abrogated the up-regulation of genes including 
Egr1, ERK2, CXCL1, MMP2, VEGFA and VEGFC. 
Similar to qRT-PCR outcomes, Western blotting 
showed the up-regulation of proteins including 
Egr1, ERK2, CXCL1, MMP2, VEGFA and VEGFC 

NAs. For instance, HIF-1A was confirmed as a 
target of miR-429. miR-429 attenuates HIF-1 
activity by decreasing HIF1A mRNA in human 
endothelial cells during the early stages of 
hypoxia. But HIF-1A can promote miR-429 ex- 
pression during normoxic conditions [21]. This 
evidence show complicated interaction betw- 
een miRNAs and their target genes. Hypoxia 
takes the major responsibility of RNV patho- 
genesis. Although over-activation of HIF/VEGF 
signaling by hypoxia has been confirmed to par-
ticipate in the RNV pathogenesis by numerous 
studies [6, 7], other molecular mechanisms 
underlying hypoxia-induced RNV are largely 
unknown.

The present study provided novel evidence that 
miR-132 up-regulation is probably involved in 

Table 3. Top 10 altered pathway in KEGG analysis after H/R treatments 
(B vs. A)

Geneset name Genes in 
overlap (k) p value

hsa04510:Focal adhesion 69 2.38E-05
hsa04920:Adipocytokine signaling pathway 29 1.27E-04
hsa04512:ECM-receptor interaction 34 1.40E-04
hsa00100:Steroid biosynthesis 12 1.44E-04
hsa05200:Pathways in cancer 97 3.56E-04
hsa00760:Nicotinate and nicotinamide metabolism 14 4.36E-04
hsa04530:Tight junction 45 1.31E-03
hsa05410:Hypertrophic cardiomyopathy (HCM) 31 2.17E-03
hsa04810:Regulation of actin cytoskeleton 64 3.52E-03
hsa00071:Fatty acid metabolism 17 5.90E-03
A: control; B: culture under H/R conditions. P < 0.05 indicates a statistically significant 
difference.

Table 4. Top 10 altered pathway in KEGG analysis after the inhibition of 
miR-132 expression under H/R conditions (C vs. B)

Geneset name Genes in  
overlap (k) p value

hsa03030:DNA replication 21 8.46E-07
hsa04110:Cell cycle 45 8.30E-06
hsa04115:p53 signaling pathway 25 8.97E-04
hsa05200:Pathways in cancer 85 9.79E-04
hsa00480:Glutathione metabolism 19 2.98E-03
hsa04512:ECM-receptor interaction 27 4.69E-03
hsa04114:Oocyte meiosis 32 9.85E-03
hsa00330:Arginine and proline metabolism 18 1.40E-02
hsa04510:Focal adhesion 51 1.75E-02
hsa05219:Bladder cancer 15 1.75E-02
B: culture under H/R conditions; C: silencing miR-132 prior to culture under H/R condi-
tions. P < 0.05 indicates a statistically significant difference. 

under HR conditions (P < 
0.05, Figure 5B). Inhibi- 
tion of miR-132 expres-
sion reversed expression 
of Egr1, ERK2, MMP2, 
VEGFA and VEGFC, but 
not CXCL1.

Discussion

In response to hypoxia, 
signaling pathways are 
induced to modulate an- 
giogenesis to improve 
local blood supply and 
remit the lack of oxygen. 
Previous studies focus-
ing on tumor pathogene-
sis and ischemic diseas-
es (e.g. stroke) provide 
mounting evidence that 
miRNAs plays critical 
role in the pro-angiogen-
ic signaling [18-20]. As 
many genes that associ-
ate to angiogenesis are 
regulated by miRNAs, 
hypoxia modulating miR-
NAs expression becomes 
an important approach 
regulating angiogenesis. 
But it should be noted 
that, in some cases, th- 
ere exists a feedback 
loop in which the target 
genes conversely impact 
on expression of miR-
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Table 5. Expression profiles of candidate genes involved in angiogenic function of miR-132
Gene 
symbol

Normalized intensity log2 (Ratio) P-value (Differentially expressed)
A B C B/A C/A C/B B/A C/A C/B

EGR1 2903.29 58255.04 14737.15 4.36 2.34 -2.08 2.49E-04 1.36E-04 2.33E-04
ERK2 5315. 90 10385.33 5619.38 1.09 0.08 -0.98 0.02 0.86 0.04
CXCL1 111.26 392240.8 103573.3 6.64 6.64 -1.92 0. 5E-04 0. 66E-04 3.71E-04
EFNA1 35442.27 8354.93 15882.76 -2.00 -1.12 0.82 9.24E-04 0.02 0.07
MMP2 280.96 6043.50 901.52 4.33 1.48 -2.85 1.18E-03 0.04 8.78E-03
VEGFA 30765.94 58802.92 25496.93 0.99 -0.23 -1.29 0.03 0.58 6.77E-03
VEGFC 529.11 3097.81 1244.08 2.45 1.06 -1.40 0.58E-03 0.08 0.01
The data were arisen from mRNA microarray analysis. HRMECs were incubated under hypoxia for 6 h, followed by culture under 
normoxia conditions for additional 6 h. These processes were referred as hypoxia/reoxygenation (H/R). Before the H/R, HR-
MECs were transfected with miR-132 inhibitor or the negative control. A: control; B: culture under H/R conditions; C: silencing 
miR-132 prior to culture under H/R conditions. P < 0.05 indicates a statistically significant difference. 
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the pathogenesis of RNV. Up-regulated miR-
132 in HRMECs under H/R conditions was 
accompanied with rapid cell proliferation and 
migration, but low apoptosis rate. However, 
interference of miR-132 expression with miR-

132 inhibitor abolished the increase in cell pro-
liferation and reduction in apoptosis rate. In- 
creased proliferation of HRMECs is an impor-
tant cause of RNV. mRNA microarray analysis 
manifested that miR-132 is associated to regu-

Figure 4. Changes of signaling pathways related to angiogenesis after miR-132 interruption. KEGG pathway analysis 
showed changes of a part of signaling pathways related to angiogenesis after interruption of miR-132 expression 
under H/R conditions. In comparison to control (H/R group), the red color represents the gene was up-regulated 
after the miRNA intervention; the green color represents the gene was down-regulated. A. HIF/VEGF pathway regu-
lating sustained angiogenesis. B. Oxidative stress transcriptionally regulates genes and further impacts endothelial 
proliferation and migration, thus promoting angiogenesis. C. ERK pathway modulates expression of VEGF, MMPs, 
and IL-8, which are critical for angiogenesis. D. ERK pathway also regulates proliferation and survival of endothelial 
cells. 

Figure 5. Regulatory effects of miR-132 on genes related to neovascularization. HRMECs were maintained in hy-
poxia for 6 h, followed by incubation in a normoxic condition for additional 6 h. These processes were referred as 
hypoxia/reoxygenation (H/R). Before the H/R, HRMECs were transfected with miR-132 inhibitor or the negative 
control. qRT-PCR (A) and Western blotting (B) were performed to evaluate expression of genes including Egr1, ERK2, 
CXCL1, EFNA1, MMP2, VEGFA and VEGFC. U6, a small nuclear RNA, was used an internal control for miR-132 in 
qRT-PCR. *P < 0.05 vs. control (n = 4). Con: control. H/R: hypoxia with following reoxygen; Inh: miR-132 inhibitor.
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lation of blood vessel development and mor-
phogenesis, in addition to the regulation cell 
proliferation and apoptosis, because numerous 
genes related to blood vessel development 
were altered by miR-132 (see KEGG analysis). 

mRNA microarray analysis showed that ex- 
pression profiles of genes such as Egr1, ERK2, 
CXCL1, EFNA1, MMP2, VEGFA and VEGFC are 
changed by miR-132 under H/R conditions. 
These genes are implicated in multiple pro-
cesses of neovascularization, according to pre-
vious documents [22-25]. qRT-PCR and Wes- 
tern blotting further identified that these ge- 
nes, except for EFNA1, were up-regulated in 
HRMECs under HR conditions, whereas inter-
ference of miR-132 expression via miR-132 
inhibitor reversed their expression (miR-132 in- 
hibition restored the mRNA expression of CX- 
CL1, but not the protein level). Egr1, a zinc fin-
ger transcription factor, can be induced imme-
diately in response to environmental stress, 
such as hypoxia, fluid shear stress, and vascu-
lar injury [22]. Egr-1 positively regulates the 
expression of proangiogenic genes, including 
VEGF, fibroblast growth factors, and IL-6 in 
endothelial cells or TNF-α in macrophages [22, 
23]. ERK2 is associated to vascular endothe- 
lial cell proliferation and migration, thereby  
contributing to angiogenesis. Activated ERK2 
was observed in accelerated neovasculariza-
tion during ischemia and wound healing [24]. 
Embryos lacking ERK2 in endothelial cells died 
in utero due to reduced angiogenesis both in 
the yolk sac and embryo proper [26]. Besides, 
blockade of ERK2 pathway attenuates VEGF-
induced proliferation of fetoplacental artery en- 
dothelial and tube formation, though the cell 
migration is unaffected [27]. MMP2, as a key 
enzyme responsible for degradation of extra-
cellular matrix, is also involved in angiogenesis, 
because angiogenesis is dependent on focal 
degradation of the vascular basement mem-
brane, which is essential for subsequent migra-
tion and proliferation of endothelial cells [25]. 
Our data demonstrated that Egr-1, ERK2 and 
MMP2 are regulated by miR-132, which sug-
gests that miR-132 is involved in multiple pro-
cesses of RNV. 

The critical role of VEGFs in RNV has been iden-
tified by considerable studies in vivo and in 
vitro [8, 28, 29]. VEGFs are produced in the hu- 
man eye by a variety of cells including Mueller 

cells, retinal pigment epithelial cells, retinal 
capillary pericytes, endothelial cells and gan-
glion cells [28]. VEGFs expression is induced by 
hyperglycemia and hypoxia, two major causes 
of RNV [8]. Expression of VEGFs levels is posi-
tively correlated to the occurrence rate and 
severity of RNV [29]. The present study verified 
that both VEGFA and VEGFC are positively regu-
lated by miR-132. KEGG pathway analysis sh- 
ows that VEGFs are regulated by ERK signaling, 
Jak1/STAT cascades, HIFs and oxidative stre- 
ss. Although HIFs remained up-regulated, sup-
pressing miR-132 impaired the up-regulation  
of VEGFs elicited by hypoxia, probably through 
inhibiting ERK signaling.

Although EFNA1 expression was altered in 
mRNA microarray analysis, qRT-PCR and Wes- 
tern blot assays showed that EFNA1 expression 
was not changed by miR-132 under HR condi-
tions. Thus mRNA microarray analysis might 
provide a false positive result in EFNA1 expres-
sion. EFNA1 is a ligand of EPHA2. Their collec-
tively regulates angiogenesis in tumor. Expres- 
sion of CXCL1 in gene level was changed by 
miR-132 under H/R conditions, as evidenced 
by mRNA microarray analysis and qRT-PCR 
assays, but its protein level was not influenced 
by miR-132, based on Western blot assay. It 
was reported that CXCL1 induction by NADPH 
oxidase and NF-κB is through VEGF, because 
antagonist for VEGF receptor reduced the in- 
duction [30]. This report indicates that CXCL1 
may be a downstream target of VEGF. Thus, 
there is the possibility that the regulation of 
CXCL1 gene expression by miR-132 is through 
VEGF. Further study is needed to identify the 
hypothesis. Accumulating evidence indicates 
that CXCL1 promotes angiogenesis through re- 
cruitment of monocyte into the peri-collateral 
space, regulation of stromal fibroblast senes-
cence and interaction with VEGF [31-34].

In summary, this study uncovered that miR-132 
is closely associated to RNV under H/R condi-
tions. miR-132 increased proliferation and mi- 
gration of HRMECs, inhibited the apoptosis, as 
well as modulated expression of genes involved 
in multiple processes of blood vessel develop-
ment, thus promoted RNV development. This 
study promotes the better understanding of the 
pathogenic mechanisms of RNV. Further study 
in vivo is needed to identify whether miR-132 is 
a key target in the management of RNV. 
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