Prognostic significance of preoperative platelet-lymphocyte ratio in a Chinese cohort patient with colorectal cancer

Mao-Song Lin¹, Ming-Jun Gao¹, Dong-Li Zhang¹, Xue-Yong Li¹, Jun-Xing Huang², Hong Yu³

Departments of ¹Gastroenterology, ²Oncology, ³Pathology, Taizhou People’s Hospital, Taizhou, Jiangsu Province, P. R. China

Received May 5, 2017; Accepted July 26, 2017; Epub August 1, 2017; Published August 15, 2017

Abstract: Cancer-related systemic inflammation affects many aspects of malignancy. The platelet-to-lymphocyte ratio (PLR), an easily applicable inflammatory marker based on platelet and lymphocyte counts, is associated with the clinical outcome of some cancers. The present study aimed to investigate the prognostic significance of the preoperative PLR in a cohort of colorectal cancer (CRC) patients. A total of 138 patients with CRC were enrolled in this retrospective study. The optimal cutoff value for the PLR was calculated using receiver operating curve (ROC) analysis. The correlation of PLR with the clinicopathological characteristics of patients was explored. Cox proportional hazard analysis was applied to determine the independent prognostic effect of PLR. PLR of 248 yielded the most optimal predictive value for the prognosis of CRC [area under the curve (AUC) = 0.820]. High level of PLR was significantly associated with lymph node and distance metastasis (P<0.001 and = 0.003, respectively), vascular and perinural invasion (P<0.001), advanced TNM stage (P<0.001), and poor differentiation (P = 0.037). Furthermore, the univariate analysis showed a significant impact of increased PLR on OS (HR = 4.326, 95% CI: 2.903-6.445, P<0.001), while this association remained significant in multivariable analysis (adjusted HR = 4.605, 95% CI: 2.786-7.611, P<0.001). Our findings indicated that elevated preoperative PLR might have potential value in predicting poor outcome in patients with CRC.

Keywords: Platelet-lymphocyte ratio, colorectal cancer, prognosis, inflammation, thrombocytosis

Introduction

Colorectal cancer (CRC) is the third leading cancer and is one of the common causes of cancer-related death worldwide [1]. With the economic development, lifestyle changes, and population aging, CRC has continued to show an increasing trend in incidence in China [2]. The prognosis of CRC has improved dramatically within the last decade, with a median survival time of 24-30 months, due to the development of systemic algorithms including chemotherapeutic and molecular targeting agents [3-5]. However, the patients with advanced CRC still have poor outcome. The prognosis of cancer patients is usually determined by the use of clinical or histopathological factors, especially TNM stage system. However, different patients with same stage usually have different outcome. It’s very important to discrimi-
Prognostic significance of PLR in colorectal cancer

ate with a poor outcome independent of the tumor stage [10, 11]. Several inflammation indices including the serum white blood cells, acute phase proteins and the combined parameters such as Glasgow prognostic score (GPS), neutrophil lymphocyte ratio (NLR), lymphocyte monocyte ratio (LMR), and Onodera’s prognostic nutritional index (PNI) have been consistently studied for potential application in cancer prognosis [12-14]. Platelets are also part of the inflammatory response and the link between thrombocytosis and shorter survival time has been established in several types of solid tumors including breast, lung, colon, gastric and ovarian cancers [15-18], with the recognition that low lymphocyte counts may also be associated with poor prognosis [19]. The platelet to lymphocyte ratio (PLR) has been hypothesized and studied as a prognostic biomarker in various cancers including CRC [20-22].

Since the complete blood count (CBC) is a simple, low cost, and routine preoperative testing, no extra cost would be incurred for the use of PLR. In this study, we investigated the association between the preoperative PLR and prognosis of CRC patients, and aimed to find a new easy accessible and reliable prognostic marker complementing the TNM stage system in clinical practice and then for the stratification of patients in further treatment.

Materials and methods

Study subjects

We performed a retrospective chart review of 138 patients who underwent colonoectomy for CRC at Taizhou People’s Hospital, Jiangsu Province, China between 2005 and 2009 to collect their clinical characteristics and demographic data. None of these cases had received preoperative chemotherapy or irradiation. Patients who had incomplete laboratory data particularly preoperative CBC and had no available medical records or surgical pathological reports were excluded. Patients who had any conditions that may affect the number of leukocytes or proportion of differential count (e.g., immediate past or current history or signs or symptoms of infection, hematologic diseases, steroid intake or receiving blood transfusion) were also excluded. The histological subtype of CRC was determined according to the 1997 UICC classification. The pathological staging was determined according to the 2002 TNM classification. Routine laboratory measurements including CBC, and automated differential counts were carried out on the day of admission in order to exclude any effects attributable to inflammation associated with sequential preoperative examinations. The ethical committee of the Taizhou People’s Hospital approved the study. Written informed consents were obtained from all patients according to the guidelines approved by the Institutional Research Board.

Two millimeters of peripheral blood was collected from patients, and was sent to the laboratory center to be assessed within one hour after venipuncture. A complete blood profile, including total and differential leukocyte counts, was measured using the COULTER LH 750 Hematology Analyzer (Beckman Coulter Inc., Brea, CA, USA). The intra-assay coefficient of variation for white blood cell was 2.5%, and the standard error of differential count was less than 3%. The PLR was calculated by dividing the platelet count by the lymphocyte count.

Follow-up

Overall survival (OS) was defined as the time from the first day of treatment to the time of death from any cause. When the patient was lost to follow-up or the death was not recorded, the patient was censored. The survival time of censored patients was defined by the period from the initiation of treatment to the last day of follow up or to December 31, 2014, the date on which the survival was investigated. Patients were followed every 3 months for the first 2 years after treatment, then every 6 months for the subsequent 3 years. Follow-up information, including death cause, was obtained through reviewing clinical information and direct contact with family. The designed during of follow-up was 5 years.

Statistical analyses

The cutoff value for the PLR was determined applying receiver operating curve (ROC) analysis. The relationship between the PLR and other clinicopathological features was analyzed by Student t-test or one way ANOVA test. Patients’ clinical end points (5-year OS) were calculated using the Kaplan-Meier method and compared by the log-rank test. Univariable and multivariable Cox proportion analysis were performed to
Prognostic significance of PLR in colorectal cancer

Table 1. Baseline characteristics of CRC patients according to the PLR value

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total (n = 138)</th>
<th>PLR</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥61</td>
<td>84</td>
<td>231.02 ± 81.31</td>
<td>0.548</td>
</tr>
<tr>
<td><61</td>
<td>54</td>
<td>228.33 ± 90.22</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>78</td>
<td>233.72 ± 80.54</td>
<td>0.677</td>
</tr>
<tr>
<td>Female</td>
<td>60</td>
<td>227.62 ± 91.03</td>
<td></td>
</tr>
<tr>
<td>LNM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>58</td>
<td>269.07 ± 90.60</td>
<td><0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>80</td>
<td>203.51 ± 69.11</td>
<td></td>
</tr>
<tr>
<td>Distance metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>5</td>
<td>340.00 ± 91.90</td>
<td>0.003</td>
</tr>
<tr>
<td>Negative</td>
<td>133</td>
<td>226.97 ± 82.31</td>
<td></td>
</tr>
<tr>
<td>Vascular invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>22</td>
<td>293.18 ± 90.56</td>
<td><0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>116</td>
<td>219.28 ± 78.93</td>
<td></td>
</tr>
<tr>
<td>Perinural invasion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>24</td>
<td>294.79 ± 86.75</td>
<td><0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>114</td>
<td>217.65 ± 78.63</td>
<td></td>
</tr>
<tr>
<td>Histologic grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>55</td>
<td>243.85 ± 94.67</td>
<td>0.037</td>
</tr>
<tr>
<td>Moderate</td>
<td>61</td>
<td>234.44 ± 84.26</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>22</td>
<td>189.73 ± 39.27</td>
<td></td>
</tr>
<tr>
<td>TNM stages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>142.50 ± 21.92</td>
<td><0.001</td>
</tr>
<tr>
<td>II</td>
<td>34</td>
<td>192.47 ± 44.18</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>97</td>
<td>240.80 ± 88.75</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>5</td>
<td>340.00 ± 91.90</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Kaplan-Meier (KM) survival curve of CRC patients was stratified by the preoperative PLR. The 5-year survival rate of patients with high level of PLR was 5.20% whereas 38.80% in patients with low level of PLR (P<0.001).

Figure 1. Kaplan-Meier (KM) survival curve of CRC patients was stratified by the preoperative PLR. The 5-year survival rate of patients with high level of PLR was 5.20% whereas 38.80% in patients with low level of PLR (P<0.001).

determine the influence of potential confounders such as age, gender, pathologic tumor stage, grade, lymph node metastasis (LNM), distance metastasis, vascular and perineural invasion on OS. Hazard ratios (HRs) estimated from the Cox analysis were reported as relative risks with corresponding 95% confidence intervals (CIs). All statistical analyses were performed using the Statistical Package for Social Sciences version 20.0 (IBM Co., Armonk, NY, USA). A two sided P<0.05 was considered statistically significant.

Results

Patients’ characteristics

Between January 2005 and December 2009, 150 patients with CRC in our hospital were recruited. Twelve patients were excluded because of incomplete clinical data. As a result, a total of 138 patients in this cohort met all inclusion criteria and were included in the study. The baseline clinicopathological parameters of 138 patients were listed in Table 1. The mean age of the patients was 61.38 ± 11.35 years (range, 33 to 82 years). A minor dominance of male cases (n = 78) was observed compared with their female counterparts (n = 60). In addition, most of the patients were classified as stage III, followed by stage II, and only five patients with stage IV and two with stage I. Fifty eight patients exhibited regional lymph node involvement. There were only five patients with distance metastasis who received palliative resection, of which all cases had significantly high levels of PLR.

Clinicopathological significance of PLR

The mean PLR of these patients was 231.07 ± 84.99. PLR of 248 yielded the most optimal predictive value for distinguishing death from survival according to ROC curves. Therefore, we determined a cutoff value of PLR.
Prognostic significance of PLR in colorectal cancer

Table 2. Univariate and multivariate analysis of factors associated with the overall survival in patients with CRC

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>Age</td>
<td>1.009 (0.997-1.027)</td>
<td>0.335</td>
</tr>
<tr>
<td>Gender</td>
<td>0.761 (0.513-1.128)</td>
<td>0.174</td>
</tr>
<tr>
<td>PLR</td>
<td>4.326 (2.903-6.445)</td>
<td><0.001</td>
</tr>
<tr>
<td>LNM</td>
<td>2.356 (1.594-3.482)</td>
<td><0.001</td>
</tr>
<tr>
<td>Distance metastasis</td>
<td>4.428 (1.381-14.292)</td>
<td><0.001</td>
</tr>
<tr>
<td>Vascular involvement</td>
<td>6.145 (3.697-10.213)</td>
<td><0.001</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>6.741 (4.102-11.077)</td>
<td><0.001</td>
</tr>
<tr>
<td>Histology grades</td>
<td>0.782 (0.597-1.024)</td>
<td>0.073</td>
</tr>
<tr>
<td>TNM stages</td>
<td>3.072 (1.868-5.051)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Survival

During the total follow-up time of 5 years, 104 patients (75%) were dead, 34 patients (25%) were still alive. Patients with high PLR had a median OS of 35 months, whereas those with low PLR had a median OS of 53 months (P<0.001, log-rank test; Figure 1). Furthermore, the results of univariate and multivariate analyses were showed in Table 2. In present study, 9 factors including age, gender, PLR, LNM, distance metastasis, vascular and perineural involvement, histological grades, and TNM stages were included in the univariate analysis. In univariate analysis, high PLR (HR = 4.326, 95% CI: 2.903-6.445, P<0.001), LNM (HR = 2.356, 95% CI: 1.594-3.482, P<0.001), distance metastasis (HR = 4.428, 95% CI: 1.381-14.292, P<0.001), vascular (HR = 6.145, 95% CI: 3.697-10.213, P<0.001) and perineural involvement (HR = 6.741, 95% CI: 4.102-11.077, P<0.001), and advanced TNM stage (HR = 3.072, 95% CI: 1.868-5.051, P<0.001) were associated with shorter OS. In further multivariate analyses, PLR (HR = 4.605, 95% CI: 2.786-7.611, P<0.001), along with the others factors such as distance metastasis (HR = 7.591, 95% CI: 2.090-27.569, P = 0.002), perineural involvement (HR = 13.20, 95% CI: 2.799-62.241, P = 0.001), and TNM stage (HR = 1.487, 95% CI: 1.086-2.496, P = 0.033), were still identified as independent prognostic factors (Table 2).

Discussion

Systemic inflammation, recognized as the ‘seventh hallmark of cancer’, has been reported to contribute to cancer proliferation, migration, angiogenesis, resistance to hormonal and chemotherapy, as well as the suppression of anti-tumor immunity through the release of chemokines, especially regulatory T cells, and therefore to affect their outcome [23-26]. A wide spectrum of hematological and biochemical markers including the levels of blood white blood cells, platelets and acute-phase proteins such as C-reactive protein (CRP) and albumin can reflect the systemic inflammatory state [27, 28]. Actually, studies on inflammation markers and host inflammatory responses in cancers have been actively carried out since 2000 [29]. Previous studies has reported that elevated WBC count and reactive thrombocytosis were predictive of outcome in addition to histological subtype, age and sex in the situation before any staging procedure to evaluate the patient for surgery [17, 30]. In addition to elevated neutrophil and platelet count reflecting systemic inflammation, decreased lymphocyte count is associated with immune suppression and may
also be associated with the shorter survival in cancers [31]. Therefore, the neutrophil to lymphocyte ratio (NLR) and PLR which combine both inflammatory and immunosuppressive indices might be better biomarkers than WBC count or platelet count alone. Increased NLR and PLR levels have already been shown to be correlated with the increase in cancer-associated system inflammation, and indicated advanced stage and predict poor outcomes in several types of malignancy including CRC [32]. Our current study mainly aimed to evaluate the role of PLR in a cohort of Chinese patient with CRC in our hospital. We found that there was no significant association of PLR with the patient’s age and gender. However, it was encouraging that PLR were notably increased in cases with LNM or distance metastasis, vascular or perineural involvement, high grade as well as advanced TNM stages. Therefore, we could speculate that PLR might correlate closely with the progression of CRC and increased platelet count and decrease of lymphocyte might promote CRC cells local invasion as well as distance shift. In addition, in this study, patients with PLR over 248 were found to have relatively poorer 5-year survival compared with those with low level of PLR, indicated that PLR was an independent prognosticator of OS in CRC. The results of our study were consistent with other previous studies which found that high level of PLR appeared to be a poor prognostic factor [22, 33].

Although there is growing interest in a clinical interpretation of these interactions, the exact mechanisms underlying the association between an elevated level of PLR and the biological behavior of cancer cells remain unclear till now. High level of PLR may reflect relatively elevated plate count and/or depleted lymphocytes. Recent experimental and clinical data indicated that the activation of platelets was crucial for cancer progression by promoting angiogenesis, degradation of the extracellular matrix, and release of adhesion molecules and growth factors [38]. In addition, tumor cell-induced platelet aggregation results in platelet coating of the tumor cells display co-expression of platelet markers which protects them from natural killer (NK) cells. These consequent may attenuating the ability of NK cells to shield circulating cancer cells against the immune system and inducing epithelial-mesenchymal transition, which leading to tumor metastasis [39-41]. Therefore, these results indicated platelets might contribute to accelerated tumor metastasis and progression. On the other hand, lymphocytes, usually CD3+T cells and NK cells, can participate in cancer immuno-surveillance and then inhibit cancer cell proliferation and metastasis [42]. The number of lymphocytes is an undisputed prognostic marker in surgical oncology, reflecting the endogenous anticancer ability of the immune system [43, 44]. Lymphocytopenia is frequently observed in advanced cancer patients, and low lymphocyte count is strongly associated with a poor prognosis in advanced cancer patients [45]. Tumor-infiltrating lymphocytes in particular have been extensively studied, and appear to have an anti-tumorigenic role in CRC [46-48]. Taken together, it is likely that a high level of PLR may reflect the combined effects of thrombosis and lymphocytopenia, and may be a more meaningful prognostic factor for survival than either alone. Theoretically, direct measurement of the serum IL-6 level is the best way to estimate system inflammation based on tumor-host interaction. However, there are many unsolved problems associated with the routine measurement of IL-6 in cancer patients. Although a recent study has revealed that the serum level of IL-6 is associated with the postoperative survival of patients with gastric cancer [49], routine measurement of IL-6 is difficult in a clinical setting because of its high cost and inconvenience. On the contrary, PLR is easy to measure routinely because of its low cost and convenience. Therefore, this parameter has been investigated as prognostic indicator for different cancer entities in recent 2-3 years.
Since high level of preoperative PLR was confirmed to indicate poor prognosis in CRC, it might be very significant for cancer prevention and treatment. Therefore, the effects of anti-inflammatory drugs on tumor occurrence and development have already been investigated extensively. There was an increasing body of evidence that supports the use of anti-inflammatory agents to decrease recurrence rates and improve survival in some cancers including CRC. Anti-platelet drugs, being widely used to prevent cardiovascular disease, have additionally been found to reduce the incidence of colorectal adenomas and the rates of overall cancer deaths. The prophylactic application of non-steroidal anti-inflammatory drugs (NSAIDs) can reduce the incidence of colon cancer by 40% to 50% [50-53]. Therefore, patients with high preoperative PLR, which indicating the systemic inflammation in patients with CRC could be considered as relatively high-risk patients who should be integrated with multi-mode anti-tumor therapies, such as chemotherapy, radiotherapy as well as the attempting to anti-inflammatory method.

Although our study revealed an unfavorable outcome in the CRC patients with high level of PLR, some limitations of our study were inherent to its design including the retrospective data collection. First, sample size was small and only 138 patients were recruited. Second, the cancer progression and survival are determined according to the local characteristics of the cancer and the host response. We did not include the intrinsic genetic background in this study. The application of a combination of these parameters reflecting both the tumor characteristics and host systemic inflammatory status is important for predicting patient survival more precisely and selecting the optimal treatment in patients with CRC. Moreover, the cutoff value of PLR in previous studies varied partially attributing to different characteristic of subjects and various methods used in different studies [21-33]. Meanwhile, the relatively small sample size in our study could not allow determination of the most appropriate cutoff value for PLR. Therefore, our data have to be regarded as preliminary and should be validated and confirmed by additional more large and prospect studies.

In conclusion, we hereby showed that PLR could be a simple and useful system for predicting the prognosis of CRC patients. Further study should be carried out to confirm the role of this scoring system and then to optimize treatment strategy.

Acknowledgements

The Project of Health Department of Jiangsu Province, China (H201363); the Social Development project of Taizhou City, Jiangsu, China (TS025); and the Project of Jiangsu University (2014).

Disclosure of conflict of interest

None.

Address correspondence to: Mao-Song Lin, Department of Gastroenterology, Taizhou People's Hospital, 210 Yingchun Road, Taizhou 225300, Jiangsu, P. R. China. Tel: +86 52386361074; Fax: +86 52386361075; E-mail: lms0605@163.com; Jun-Xing Huang, Department of Oncology, Taizhou People's Hospital, 210 Yingchun Road, Taizhou 225300, Jiangsu, P. R. China. Tel: +86 523-86361074; Fax: +86 523-86361075; E-mail: hjxtz@sina.cn

References

Prognostic significance of PLR in colorectal cancer

[27] Folsom AR, Rosamond WD, Shahar E, Cooper LS, Aleksic N, Nieto FJ, Rasmussen ML and Wu KK. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC)
Prognostic significance of PLR in colorectal cancer

Prognostic significance of PLR in colorectal cancer

