High-grade serous ovarian and fallopian tube carcinomas with similar clinicopathological characteristics might originate from serous tubal intraepithelial carcinoma in Chinese women

Jingmei Wang¹, Hongyan Wu¹, Yan Zhang², Yifen Zhang¹, Xinxiu Li³, Qingya Zhao³, Fanqing Meng⁴, Qin Huang¹,4, Yaping Wang³

Departments of ¹Pathology, ²Obstetrics and Gynecology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China; ³Jiangsu Key Laboratory of Molecular Medicine, Department of Medical Genetics, Nanjing University Medical School, Nanjing, Jiangsu Province, China; ⁴Department of Pathology and Laboratory Medicine, VA Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA

Received May 30, 2017; Accepted July 8, 2017; Epub August 1, 2017; Published August 15, 2017

Abstract: Aims: This study aimed to compare the clinicopathological features, incidence, and prognosis between type II ovarian carcinoma (OC) and fallopian tube carcinoma (FTC) in Chinese women and to analyze the origin of high-grade serous carcinoma (HGSC). Methods: Three hundreds and seventy-four OC cases and 45 FTC cases were retrospectively studied with histomorphology, tissue microarray, and immunohistochemistry. Results: Our data showed that the characteristics of OC and FTC in Chinese women were younger at diagnosis with worse prognosis. There was no significant difference between type II OC and FTC in the clinicopathological information and survival. Serous tubal intraepithelial carcinoma (STIC) were found in 41.7% (43/103) of ovarian high-grade serous carcinoma (HGSC) and 52.4% (22/42) cases of tubal HGSC, and 26 patients were found with only fallopian tube (FT) mucosal invasive carcinoma. Seventy-eight of 87 cases of ovarian HGSC with tubal lesions (STIC and/or FT mucosal invasive carcinoma) was in advanced stage. There was no significant difference between newly assigned FTC (ovarian HGSC with tubal lesions and FTC) and type II OC without tubal lesions in many clinicopathological parameters, expression of immunohistochemical indicators and survival, but type I OC was quite much different from the former two. Conclusions: Our data suggested that OC of type II and FTC might be originated from the same organ, and strongly supported the dualistic model of epithelial ovarian cancer. Moreover, this study provided a further clinical basis for the prophylactic salpingectomy to reduce the risk of OC.

Keywords: Ovarian cancer, fallopian tube cancer, Chinese women, serous tubal intraepithelial carcinoma, high-grade serous carcinoma

Introduction

At present, ovarian cancer (OC) ranks first in gynecologic oncology mortality because of the inability of early diagnosis [1]. A dualistic model of epithelial ovarian cancer divides epithelial ovarian cancer into two broad categories, designated as type I and type II with different characteristics in histomorphology, immunohistochemistry, molecular genetic phenotypes, and clinical pathways [2]. Briefly, type I OC include mucinous carcinoma (MC), endometrioid carcinoma (EC), clear cell carcinoma (CCC) and low-grade serous carcinoma (LGSC), with the features of slow progression and favorable overall prognosis, but low sensitivity to chemotherapy. Type II OC are defined as high-grade neoplasms, with high-grade serous carcinoma (HGSC) as the most common histological type, and show the features of rapid progression, poor prognosis, but high sensitivity to chemotherapy. Recent studies suggest that a large proportion of HGSC may arise from the distal fallopian tube epithelium, with the serous tubal intraepi-
The origin of similar high-grade serous ovarian and fallopian tube carcinomas

Origin of similar high-grade serous ovarian and fallopian tube carcinomas

Table 1. The primary antibodies used for immunohistochemistry

<table>
<thead>
<tr>
<th>Name</th>
<th>Clone</th>
<th>Dilution</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>P53</td>
<td>BP53.12</td>
<td>1:150</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td>Ki67</td>
<td>SP6</td>
<td>1:500</td>
<td>Neomarkers, USA</td>
</tr>
<tr>
<td>Cyclin D1</td>
<td>SP4</td>
<td>1:80</td>
<td>Neomarkers, USA</td>
</tr>
<tr>
<td>Estrogen receptor (ER)</td>
<td>EP1</td>
<td>1:150</td>
<td>Epitomics, USA</td>
</tr>
<tr>
<td>Progesterone receptor (PR)</td>
<td>EP2</td>
<td>1:250</td>
<td>Epitomics, USA</td>
</tr>
<tr>
<td>P16</td>
<td>6H12</td>
<td>1:100</td>
<td>Novocastra, UK</td>
</tr>
</tbody>
</table>

Study population

Over the study period from 2003 to 2014, a total of 419 radical resection cases with 374 OCs and 45 FTCs, which were carried out at the Nanjing Drum Tower Hospital in China, were retrospectively studied. The study protocol was approved by the medical ethics committee of the Nanjing Drum Tower Hospital. Histopathological classification of OC and FTC was based on the 2014 World Health Organization (WHO) classification, and the International Federation of Gynecology and Obstetrics (FIGO) surgical staging system. The treatment of all patients followed the 2011 NCCN Clinical Practice Guidelines (including the FTC and primary peritoneal cancer).

Following clinicopathological data were collected, including age at diagnosis, chief complaint, family history of malignancy, age of menarche, menopausal status, preoperative serum levels of CA125 and CA19-9, cytology of ascites or peritoneal washings, lymph node metastasis, FIGO stage, and the methods of surgical treatment. All patients were followed-up by telephones or at outpatient clinic visits.

Histopathological and immunohistochemical evaluations

All radical resection specimens were submitted for histopathological examination with a standard surgical pathology tissue processing protocol. Tissue sections were stained by hematoxylin and eosin (HE). Tissue microarray (TMA) was constructed manually with a TMA instrument (Beecher instrument Co., MTA-1, USA) with 1 mm-core. Duplicated TMA cores were made for each case to ensure the validity and effectiveness of immunohistochemistry (IHC) studies. Once completed, each TMA block was sectioned at 4 micrometer in thickness for routine HE stain and IHC. IHC was routinely performed with the automated Dako EnVison System (Dako, USA). The primary antibodies used for this project were listed in Table 1.

Table 2. FIGO Stage of type I and type II primary OC patients

<table>
<thead>
<tr>
<th>FIGO stage</th>
<th>No. of patients</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>88</td>
<td>62.41</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>8.51</td>
</tr>
<tr>
<td>III+IV</td>
<td>41</td>
<td>29.08</td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>21</td>
<td>9.01</td>
</tr>
<tr>
<td>II</td>
<td>27</td>
<td>11.59</td>
</tr>
<tr>
<td>III+IV</td>
<td>185</td>
<td>79.40</td>
</tr>
</tbody>
</table>

Materials and methods

Study population

The incidence and mortality of OC in Chinese women are rising recently with unknown reasons [11, 12]. In fact, clinicopathologic investigation with comparative analysis between OC and FTC in Chinese women is also lacking. The relationship between OC and FTC is not fully understood. Even in most studies from Europe and America, the clinicopathologic characteristics of OC and FTC were studied separately without consideration of STIC as the origin of HGSC. Therefore, the aim of this study was to explore the characteristics of OC and FTC in Chinese women and test our hypothesis that HGSC of OC and FTC might originate from STIC in Chinese women.
The IHC stained TMA slides were independently reviewed by two gynecological oncology pathologists who were blinded with the clinical and survival information of each patient. The result of p16 IHC staining was evaluated using a semi-quantitative scoring system proposed by Barnes [13]. Ki-67 and cyclin D1 immunoreactivity was assessed by calculating the percentage of the estimated number of positive nuclear stained cells over the number of total neoplastic cells on the same TMA core. Cyclin D1 expression was classified into low expression, when the percentage of positive cells was less than or equal to 10%, and high expression, when the percentage of positive cells was greater than 10% [14]. The method for assessment of p53 expression followed that described in the previous publication [15]. ER and PR expression was semi-quantitatively assessed with the H-score value [16], which was considered as positive if H-score was >0, otherwise as negative if H-score was 0.

Statistical analysis

The Statistical Package for the Social Sciences (SPSS, version 17.0, Chicago, USA) was used for analysis. For continuous variables, the descriptive values were calculated with the Microsoft excel as means, standard error with deviation, and range. The χ^2 test and Fisher’s exact tests were used for analysis of differences among groups. The Kaplan-Meier estimation method was used for survival analysis with a log rank test to assess the significance in difference in survival among groups. The Cox regression model was employed to determine independent prognostic factors for survival. A P-value of <0.05 was considered to be statistically significant.

Results

Patients and clinical outcomes

There were 141 cases of type I OC, including 40 cases of MC, 31 cases of EC, 39 cases of CCC, 21 cases of LGSC, and 10 cases of other subtypes. The age of type I OC patients were from 16 to 88 years, with the mean age of 50 years and median age of 51 years. Two hundred and thirty-three cases of type II OC included 219 cases of HGSC, 3 cases of malignant mixed mesodermal tumor (MMMT), 11 cases of poorly differentiated endometrioid carcinoma and undifferentiated carcinoma. Both of the mean and median ages for type II OC patients were
Table 3. Analysis of clinicopathological parameters in patients of type II OC and FTC

<table>
<thead>
<tr>
<th>Clinicopathological parameters</th>
<th>FTC</th>
<th>Type II OC</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>56.93±1.57</td>
<td>56.24±0.64</td>
<td>0.666</td>
</tr>
<tr>
<td>Age of menarche</td>
<td>15.14±0.28</td>
<td>14.95±0.2</td>
<td>0.526</td>
</tr>
<tr>
<td>Menopause status</td>
<td></td>
<td></td>
<td>0.476</td>
</tr>
<tr>
<td>Yes</td>
<td>27</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>16</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Family history of malignancy</td>
<td></td>
<td></td>
<td>0.077</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>35</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Preoperative serum CA125 (U/ml)</td>
<td></td>
<td></td>
<td>0.284</td>
</tr>
<tr>
<td>≤35</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>>35, ≤500</td>
<td>18</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>>500</td>
<td>19</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Preoperative serum CA199 (U/ml)</td>
<td></td>
<td></td>
<td>0.777</td>
</tr>
<tr>
<td>≤37</td>
<td>35</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>>37</td>
<td>3</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td>0.170</td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>III+IV</td>
<td>30</td>
<td>185</td>
<td></td>
</tr>
</tbody>
</table>

56 years with range of 32-85 years. The majority of types I OCs (62.41%) were diagnosed as FIGO I stage, whereas most of type II OCs (79.40%) were in an advanced stage (III+IV) (Table 2).

We received 364 patients survival information after a follow-up of 1-202 months. Among these, 22 of 139 (15.83%) type I OC patients were died of cancer with survival period of 4-47 months. Sixteen of 22 cases were in stage III or IV at the time of diagnosis. The mortality rate of type II OC patients was 22.67% (51/225) and the survival time was from 4 to 82 months. Among them, 49 patients were in stage III or IV. Regarding the overall survival (OS) and progression free survival (PFS) of patients in advanced stage, we found significant differences between type I OC and type II OC (Figure 1). Patients in advanced type I OC showed worse prognosis than that of type II OC.

Forty-five patients were diagnosed as FTC, including 42 cases of HGSC, 1 case of MMT, 1 case of unclassified poorly differentiated carcinoma, and 1 case LGSC. Among them, 30 patients were in stage III or IV. The ages of onset were from 39 to 84 years, with the mean age of 57 years and median age of 55 years.

The survival analysis showed that OS and PFS were 51 and 33 months, respectively (Figure 2). As shown in Table 3, our results indicated that type II OC and FTC had no prominent difference in the age of onset, age of menarche, menopause status, family history of malignancy, preoperative serum levels of CA125 and CA19-9, and FIGO stage. The survival analysis of the patients with advanced type II OC and those with FTC showed no significant difference (Figure 3). Also, there was no significant difference in PFS between patients with type II OC and FTC in early stage (I+II) either (P=0.807).

Immunohistochemical analysis

Excluding patients received neoadjuvant chemotherapy, our results showed that there was no significant difference in the expression of the immunohistochemical markers between FTC and type II OC (Table 4). The positive expression rates of p53 in FTC and type II OC were 65.7% and 74.1%, respectively, and medium to strong positive expression rates were 73.5% and 76.8% in p16, respectively. The high expression rates of cyclin D1 were 36.4% and 48.0%, and ER were 67.6% and 68.9% as well as PR was 44.1% and 56.7%, respectively. In addition, Ki-67 index was slightly higher in FTC.

Assessment of STIC in OC and FTC

One hundred and forty-three OC cases including 106 cases of type II OC and 37 cases of type I OC, were collected from 2010 to 2014, and the fallopian tubes were sampled using the SEE-FIM protocol. STICs were observed in 43 of 103 (41.7%) type II OC patients (Figure 4). STICs were not only found in fimbrial end of tube (34 cases), but also in the fallopian tube ampulla (9 cases). STICs were confirmed by immunohistochemical staining of p53 and Ki-67 [17, 18]. There were also 26 patients with only FT mucosal invasive carcinoma (Figure 4). Moreover, we reviewed the OC cases from 2003 to 2009 which were diagnosed according to the conventional criteria of primary site, and
Origin of similar high-grade serous ovarian and fallopian tube carcinomas

The tubes were sampled using the traditional method. In 18 HGSC patients, the tubal lesions (STIC and/or FT mucosal invasive carcinoma) were observed in unilateral or bilateral fimbrial end/ampulla of tube, of which 14 cases showed STIC, and 4 cases showed invasive mucosal carcinoma in tube.

A total of 87 OC cases were associated with the tubal lesions. Among 42 patients with fallopian tube HGSC, 22 cases (52.38%) had STIC (Figure 5). According to several related references [19-21], we named these 129 cases mentioned above as cases of "newly assigned FTC".

The tubal lesions were not observed in other 74 OC patients, included 37 cases of type II OC and 37 cases with type I OC.

Clinicopathological characteristics in cases with newly assigned FTC

The clinicopathological characteristics of the 129 cases of newly assigned FTC were compared with cases of type II OC without tubal lesions and type I OC patients, respectively (Table 5). The results showed that there was no significant difference between newly assigned FTC and type II OC without tubal lesions in age of onset, age of menarche, menopause status, family history of malignancy, preoperative serum levels of CA125 and CA19-9, and FIGO stage. However, there were significant differences between newly assigned FTC and type I OC in age of onset, age of menarche, menopause status, preoperative serum levels of CA125 and CA19-9, and FIGO stage. In addition, the majority of cases of newly assigned FTC and type II OC without tubal lesions were in advanced stage (III or IV), while most cases in the type I OC group were in early stage (I or II).

The Kaplan-Meier estimation showed no significant difference in the OS and PFS between advanced patients of newly assigned FTC and type II OC without tubal lesions, while significant difference between newly assigned FTC and type I OC (Figure 6). The mean OS of advanced patients with newly assigned FTC and type I OC were 52.17 months and 21.81 months, while the mean PFS were 28.68 months and 14.57 months, respectively.

Table 6 showed that the expression of p53, p16, ER, and Ki-67 were high in the former two
Origin of similar high-grade serous ovarian and fallopian tube carcinomas

groups, and those in type I OC were much lower. Cyclin D1 was significantly high expressed in type I OC patients. In addition, there was no significant difference in PR expression among the three groups.

Cox’s regression analysis showed that FIGO stage was an independent prognostic factor in cases of newly assigned FTC (OR=8.619) (Table 7).

Discussion

Due to the lack of specific clinical symptoms, it was hard to have an early diagnosis with OC, and most patients presented with advanced-stage disease [22]. Most patients are postmenopausal women aged near 60-year-old, and its etiology was associated with a variety of factors. BRCA mutation was the most well-known risk factor [23, 24]. Moreover, hormone levels, chronic inflammation, smoking, high fat diet, obesity, infertility and environmental factors were also risk factors of OC. And the pathogenesis and histological changes of FTC were very similar to OC.

In western countries, the median age of patients with OC was over 60 years [25, 26]. In our study, the median and mean ages of onset for type II OC patients were similar to another research from China [27], but less than patients in western countries. This may be related to China’s one-child policy or ethnic differences. Family history in this study included breast cancer, OC and other malignancies. Among them, 18 cases were with breast cancer/OC family history, 11 cases with gastric cancer, 10 cases with esophageal cancer and 18 cases with other miscellaneous malignancy. Malignancies of digestive tract were the most common.

Similar to the literatures, our data showed that HGSC was the most common histological subtype of OC (219/374, 58.56%), and most advanced cases were patients with type II OC. These results were consistent with the large number and rapid clinical progression of type II
Origin of similar high-grade serous ovarian and fallopian tube carcinomas

The mean OS for advanced type I OC and type II OC patients were 43.51 and 55.94 months, while the corresponding mean PFS were 17.44 and 30.98 months, respectively. Therefore, our results also implied that type I OC was insensitive to chemotherapy, and the prognosis of patients with advanced type I OC was worse than that of type II OC.

Compared with a clinical research with large sample of primary FTC [28], our data showed that FTC patients in Chinese population had the following characteristics: younger age of onset (median age: 55 vs. 62), a higher number of clinically advanced cases (67% vs. 53%), and the median OS and PFS being significantly shorter in patients with advanced disease (OS: 32 m vs. 62 m; PFS: 25 m vs. 38 m). These suggested that FTC in the Chinese population has a worse prognosis.

Several clinical researches [1, 26, 29] compared the prognosis of serous OC and FTC patients, but the results were variable. Some found the prognosis was similar between serous OC and FTC patients [30], and some concluded that FTC patients had better prognosis than OC patients in advanced stage. A study [26] analyzed the prognostic of 12336 cases of pelvic HGSC from 2004 to 2009, and found that the prognosis of patients of tubal HGSC in advanced stage is better than patients of OC. However, the criteria for assessment for the primary site are not mentioned in the literature. Our data indicated that OS and PFS of type II OC patients in advanced stage have no significant difference compared with FTC patients according to the traditional criteria of primary site.

The WHO classification and subsequent literatures combined OC and FTC together [31, 32], based on their similar epidemiological characteristics and clinical features. We found no significant difference between cases of type II OC and FTC in the clinicopathologic parameters and immunohistochemical markers. And survival analysis showed that there were no significant differences between the two groups in OS of patients in the advanced stage, and in PFS of patients not only in early stage but also in advanced stage. These suggested that etiology

<table>
<thead>
<tr>
<th>Clinicopathological parameters</th>
<th>Newly assigned FTC</th>
<th>Type II OC without tubal lesions</th>
<th>Type I OC</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of onset</td>
<td>57.40±0.84</td>
<td>56.32±1.60</td>
<td>51.16±2.85</td>
<td>0.546</td>
</tr>
<tr>
<td>Age of menarche</td>
<td>14.94±0.16</td>
<td>15.22±0.31</td>
<td>14.41±0.22</td>
<td>0.421</td>
</tr>
<tr>
<td>Menopause status</td>
<td></td>
<td></td>
<td></td>
<td>0.621</td>
</tr>
<tr>
<td>Yes</td>
<td>89</td>
<td>23</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>38</td>
<td>12</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Family history of malignancy</td>
<td></td>
<td></td>
<td></td>
<td>0.250</td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>112</td>
<td>35</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Preoperative serum CA125 (U/ml)</td>
<td></td>
<td></td>
<td></td>
<td>0.882</td>
</tr>
<tr>
<td>≤35</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>>35, ≤500</td>
<td>45</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>>500</td>
<td>65</td>
<td>21</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Preoperative serum CA199 (U/ml)</td>
<td></td>
<td></td>
<td></td>
<td>0.296</td>
</tr>
<tr>
<td>≤37</td>
<td>104</td>
<td>34</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>>37</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>FIGO stage</td>
<td></td>
<td></td>
<td></td>
<td>0.218</td>
</tr>
<tr>
<td>I</td>
<td>7</td>
<td>5</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>17</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>III+IV</td>
<td>105</td>
<td>29</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Notes: P1: Newly assigned FTC vs. Type II OC without tubal lesions; P2: Newly assigned FTC vs. Type I OC.
Origin of similar high-grade serous ovarian and fallopian tube carcinomas

and pathogenesis of FTC and OC might be similar, which supported the hypothesis that type II OC and FTC were in essentially the same disease.

STIC provided a basis for the early identification and prevention of ovarian HGSC, which was of great clinical significance. In our study, 43 cases of HGSC showed STIC, including 9 cases of ipsilateral STIC, 1 case of contralateral STIC, 25 cases of bilateral ovarian lesions with unilateral STIC, and 8 cases of bilateral ovarian lesions with bilateral STIC. The rate of STIC was similar to reported in the literature [8]. We also found 18 cases with the tubal lesions in patients using non-SEE-FIM protocol. Moreover, STIC were closely related to FTC. Our histological findings provided powerful pathological support for the hypothesis that most pelvic HGSC originate from the fallopian tube.

In the newly revised FIGO staging guidelines, OC, FTC, and peritoneal cancer staging were unified [31]. In some cases, the primary site may not be possible to clearly delineated should be listed as “undesignated” or described as “fallopian tube-ovarian HGSC” [33, 34]. However, it was extremely important to determine the primary site of pelvic HGSC for epidemiological studies, morbidity, mortality, data collection and clinical trials. Some studies recommended that pelvic HGSCs, which are only associated with FT mucosal invasive HGSC, should be included in the fallopian tube origins. Evidence includes: (1) The majority of FT mucosal invasive HGSC was associated with STIC; (2) The progression of tumor invasion was in situ carcinoma/intraepithelial neoplasia to early invasive cancer, and further progressing to invasive cancer; (3) It was impossible to observe the whole histology of the lesion due to the limitations of pathological samples and slides.

For a long time, most clinical studies have identified OC and FTC as two separate cancers, and did not consider that the histological features of HGSC mostly associated with STIC. Therefore, these studies might be biased. Considering this, we firstly combined cases of OC with the tubal lesions and the “traditional” FTC, and defined as “newly assigned FTC”. Compared patients of newly assigned FTC with type II OC without tubal lesions, there was no significant difference in the clinicopathological parameters as well as in OS and PFS of patients with advanced stage, and the results of IHC were similar between the two groups. These were similar to the analysis between the “conventional” type II OC and FTC (Tables 3, 4 and Figure 3), and provided a basis for the hypothesis that “tubal epithelium may be the origin of high-grade ovarian serous carcinomas that lack evidence of tubal involvement” [4]. However, there were significant differences between cases of newly assigned FTC and type I OC in a number of clinicopathological parameters, and survival in patients with advanced disease, which was consistent with the dualistic model of epithelial ovarian cancer. Furthermore, Cox’s regression analysis showed that FIGO stage
Origin of similar high-grade serous ovarian and fallopian tube carcinomas

Table 6. Immunohistochemical analysis in patients of newly assigned FTC, type II OC without tubal lesions, type I OC

<table>
<thead>
<tr>
<th></th>
<th>Newly assigned FTC</th>
<th>Type II OC without tubal lesions</th>
<th>Type I OC</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>p53 Positive</td>
<td>86</td>
<td>28</td>
<td>5</td>
<td>0.396</td>
</tr>
<tr>
<td>Negative</td>
<td>32</td>
<td>7</td>
<td>32</td>
<td>0.000</td>
</tr>
<tr>
<td>p16 -</td>
<td>13</td>
<td>1</td>
<td>12</td>
<td>0.583</td>
</tr>
<tr>
<td>+</td>
<td>15</td>
<td>4</td>
<td>15</td>
<td>0.000</td>
</tr>
<tr>
<td>++</td>
<td>30</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>+++</td>
<td>58</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>cyclin D1 High expression</td>
<td>58</td>
<td>9</td>
<td>28</td>
<td>0.061</td>
</tr>
<tr>
<td>Low expression</td>
<td>57</td>
<td>20</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ER Positive</td>
<td>75</td>
<td>17</td>
<td>11</td>
<td>0.000</td>
</tr>
<tr>
<td>Negative</td>
<td>40</td>
<td>12</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>PR Positive</td>
<td>58</td>
<td>13</td>
<td>13</td>
<td>0.589</td>
</tr>
<tr>
<td>Negative</td>
<td>57</td>
<td>16</td>
<td>22</td>
<td>0.168</td>
</tr>
<tr>
<td>Ki-67 index</td>
<td>39.73±1.79</td>
<td>41.27±3.56</td>
<td>27.12±4.00</td>
<td>0.698</td>
</tr>
</tbody>
</table>

Notes: P1: Newly assigned FTC vs. Type II OC without tubal lesions; P2: Newly assigned FTC vs. Type I OC.

Table 7. The analysis of independent prognostic factors by Cox regression model for patients with newly assigned FTC

<table>
<thead>
<tr>
<th></th>
<th>Sig.</th>
<th>Exp (B)</th>
<th>95.0% CI for Exp (B)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIGO stage (I+II vs. III+IV)</td>
<td>0.035</td>
<td>8.619</td>
<td>1.169</td>
<td>63.566</td>
</tr>
</tbody>
</table>

Acknowledgements

This work was supported by Medical Science and Technology Development Program Fund of Nanjing City (YKK10071 and YKK16090).

Disclosure of conflict of interest

None.

Address correspondence to: Yaping Wang, Jiangsu Key Laboratory of Molecular Medicine, Department of Medical Genetics, Nanjing University Medical School, Nanjing, Jiangsu Province, China. E-mail: wangyap@nju.edu.cn

References

Origin of similar high-grade serous ovarian and fallopian tube carcinomas

Origin of similar high-grade serous ovarian and fallopian tube carcinomas

