Original Article
Long non-coding RNA taurine-upregulated gene 1 promotes cells proliferation, migration and invasion while represses apoptosis, and upregulates AURKA expression in hepatocellular carcinoma

Peng Kang, Guihua Jiang, Qingyang Meng, Wenjuan Liu, Xia Wu

Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China

Received November 10, 2017; Accepted December 7, 2017; Epub July 1, 2018; Published July 15, 2018

Abstract: This study aimed to assess the effect of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) on cells proliferation, migration, invasion and apoptosis of hepatocellular carcinoma (HCC) cells. lncRNA TUG1 expression was detected in HCC cell lines (SMMC7721, HepG2 and BEL-7402 cells) and normal liver cells (L-02 cells) by qPCR assay. After the transfection of blank mimic, lncRNA TUG1 mimic, blank inhibitor and lncRNA TUG1 inhibitor plasmids into SMMC7721 cells, CCK8, wound-healing, matrigel assay, AV/PI, qPCR assay and western blot assays were performed to detect cells proliferation, migration, invasion, apoptosis, RNA expression and protein expression respectively. LncRNA TUG1 expression was increased in SMMC 7721 cells, HepG2 cells and BEL-7402 cells compared to L-02 cells. After transfection of lncRNA TUG1 mimic and inhibitor plasmids, cells proliferation, migration and invasion were observed to be increased in lncRNA TUG1 mimic group compared to blank mimic group (NC1), while were decreased in lncRNA TUG1 inhibitor group compared with blank inhibitor group (NC2). As to cells apoptosis, AV/PI assay disclosed that lncRNA TUG1 mimic suppressed cells apoptosis rate than NC1 while lncRNA TUG1 inhibitor promoted cells apoptosis rate than NC2, apoptosis markers (C-Caspase3 and Bcl) protein expression also supported the regulation of lncRNA TUG1 on cells apoptosis. In addition, lncRNA TUG1 positively regulated the protein and mRNA expressions of AURKA, but not SERPINE1 or BRAF. In conclusion, lncRNA TUG1 promotes cells proliferation, migration and invasion while represses apoptosis, and upregulates AURKA expression in HCC cells.

Keywords: LncRNA TUG1, AURKA, hepatocellular carcinoma (HCC), cells proliferation, migration, invasion, apoptosis

Introduction
Liver cancer, one of the most frequently diagnosed cancers, leads to approximately 782500 new cases and 745500 deaths during 2012 all over the world, among which more than 50% of the total number of new cases and deaths occur in China [1, 2]. Most of these primary liver cancer patients (70% to 90%) are diagnosed as hepatocellular carcinoma (HCC), which is considered as the sixth most common cancer and the third leading cause of cancer-related deaths worldwide [3]. Although there are tremendous improvements related to regular surveillance for patients with chronic liver disease, early diagnosis and surgical intervention, the 5-year survival rates of HCC patients is still less than 25%, which might result from its high degree of malignancy, recurrence and metastasis [4, 5]. According to the biological characteristics of malignant tumor, aberrant cell activities via regulating multiple genes, molecules as well as signal pathways, contribute to the promotion of tumorigenesis and progression of carcinomas, thereby affecting the prognosis of cancer patients [6]. Therefore, further understanding of the molecular mechanism of HCC progression may improve the diagnosis and develop novel therapeutic targets.

Long non-coding RNAs (lncRNAs), a class of RNA with a length longer than 200 nt and exhibited limited or no protein-coding capacity, have been reported to express in different tissues or cells, and drive several cancer phenotypes through the interaction with various cellular
LncRNA in hepatocellular carcinoma

macromolecules, such as DNA, RNA or protein [7, 8]. LncRNA taurine-upregulated gene 1 (TUG1), a novel IncRNA with 6.7-kb nucleotides, has been reported to be frequently upregulated in several carcinomas such as pancreatic cancer, colorectal cancer as well as esophageal squamous cell cancer, and serve as an oncogenic factor contributing to the processes of tumorigenesis and prognosis of these carcinomas, while the biological functions of IncRNA TUG1 in HCC is unclear [9-11]. Hence, the purpose of this study is to assess the effect of IncRNA TUG1 on cells proliferation, migration, invasion and apoptosis of HCC cells.

Materials and methods

Cells culture

Human HCC cell lines including SMMC 7721, HepG2 and BEL-7402 as well as human normal liver cell line L-02 were purchased from Shanghai Institutes for Biological Science (Shanghai, China). Cells were inoculated in Roswell Park Memorial Institute (RPMI) 1640 (Sigma-Aldrich, USA) medium containing 10% fetal bovine serum (FBS) (Gibco, USA), 100 U/ml penicillin as well as 100 mg/ml streptomycin, and cultured in a humidified incubator at 37°C with 5% CO₂.

Detection of IncRNA TUG1 expression in different cell lines

The IncRNA TUG1 expression by quantitative polymerase chain reaction (qPCR) assay was detected in human HCC cell lines SMMC-7721 cells, HepG2 cells and BEL-7402 cells as well as human normal liver cell line L-02 cells. The cell line, which exhibited the most significant difference in IncRNA TUG1 expression compared to L-02 cells, was selected for further experiments.

Transfection of IncRNA TUG1 mimic and inhibitor plasmids into SMMC 7721 cells

After washing three times with PBS, SMMC 7721 cells were transfected with blank mimic, IncRNA TUG1 mimic, blank inhibitor and IncRNA TUG1 inhibitor plasmids, and then assigned into NC1 mimic group, IncRNA TUG1 mimic group, NC2 inhibitor group and IncRNA TUG1 inhibitor group. After transfection, the subsequent assays were performed: (1) qPCR assay for IncRNA TUG1 expression at 24 hours (h); (2) CCK8 assay for cells proliferation at 0, 24 and 48 h; (3) Wound-healing assay for cells migration; (4) Matrigel assay for cells invasion 24 h; (5) Annexin V-FITC (AV)-propidium Iodide (PI) assay and C-Caspase 3 expression as well as Bcl-2 expression by western blot assay for cells apoptosis at 48 h; (6) Detection of candidate targeted gene expression by qPCR and western blot assays.

CCK-8 assay for cells proliferation

Cells were kept in the incubator with 5% CO₂ at 37°C after adding 10 ul CCK8 and 90 ul RPMI 1640 medium. The microplate reader was used for measurement of OD value, and the proliferative-detection was carried out after culturing for 0, 24 and 48 h.

Wound-healing assay for cells migration

After seeded into 6-well plates, cells were cultured until achieving 90% growth confluence. After that, a sterile pipette tip was used to scrape adherent cells gaps, and microscope (Nikon, Japan) was used for cells observation at 0 h and 24 h. The calculation of migration ratio was as follows: (the wound area at 0 h- wound area at 24 h)/wound area at 0 h (ranging from 0%-100%).

Matrigel assay for cells invasion

After coated with Matrigel basement membrane matrix (BD, USA) in the Upper site of 8-um pore, 6.5-mm transwell filter chamber (Coring, USA) at 37°C for 2 h, cells (5×10⁴) were seeded in the top chamber of a transwell filter. The 4% paraformaldehyde was used to fix the invasive cells on the lower side of the filter after being culture for 24 h, and 0.5% Crystal violet (Sigma-Aldrich, USA) was used to stain invasion cells. The calculation of invasive cells count in each well was the average of invasive cells count of 5 fields in each well with 100× magnification under microscope.

AV/PI assay, C-caspase 3 and Bcl-2 expression for cells apoptosis

After digested by pancreatin, cells were suspended in 100 ul Blinding Buffer supplemented with 5 ul Annexin V-FITC (AV) and kept for 15 minutes at room temperature in the darkness. Before flow cytometry assay, 5 ul Propidium Iodide (PI) was added. The analysis of the
LncRNA in hepatocellular carcinoma

Results was performed by flow cytometry. The cells apoptosis-related protein C-caspase 3 and Bcl-2 expression were detected by western blot assay.

Detection of candidate targeted gene expression

The detection of mRNA and protein expression of candidate target genes was performed by qPCR and western blot assays, including Aurora kinase A (AURKA), plasminogen activator inhibitor 1 (SERPINE1) and BRAF. Target mRNAs of IncRNA TUG1 were predicted by Rlsearch, RNAplex and LncTar database [12-14]. Genes related to HCC pathological processes were subsequently evaluated by DisGenet (www.disgenet.org) [15]. Finally, AURKA, SERPINE1 and BRAF, potential target genes in HCC were assessed by combining analysis of IncRNA TUG1 predicted target genes and HCC related genes.

qPCR assay

IncRNA and mRNA expression were detected by qPCR assay. All procedures were based on the manufacturer's instructions. The TRIzol reagent (Invitrogen, USA) was used to extract total RNAs. The quantitation of RNA was carried out by OD 260 (Takara, Japan). Subsequently, cDNA synthesis was subjected to qPCR with SYBR Green kit (Takara, Japan). The PCR profile was 95°C for 5 min, and 40 cycles of 95°C for 5 s, 61°C for 30 s. GAPDH (mRNAs) or U6 (lncRNAs) were used as the internal reference. Data analysis was carried out using the 2^ΔΔct method. The primer sequences were as follows: IncRNA TUG1: Forward 5' TAGGAG-TGGATGTGGTCTGTAGCA 3' Reverse 5' TGGTC-GTGAAATATGGTCAATG 3'; U6: Forward 5' CTCGCTTCGGCAGCACATA3' Reverse 5' CTGTCGGCAGCACATA3'; GAPHD: Forward 5' GA-GTCCACTGGCGTCTTCAC3' Reverse 5' ATCTTGAGGCTGTTGTCATACTTCT3'; AURKA: Forward 5' CTGAGGAGGAACTGGCATCAA3' Reverse 5' ATTAGTGAGCTCTGAGGACAT3' SERPINE1: Forward 5' ACCGGCTGTTGCTGGTGAAT3' Reverse 5' GCAGTTCCASGGATGCTAGTAT3'; BRAF: Forward 5' CGGAGGAGGTCTGGGATAA-TCA3' Reverse 5' GAAGGAGAGAGGTCTGTAAGCT3'.

Western blot assay

Total protein was extracted from lysing cells in 1 ml RIPA buffer (Thermo Fisher Scientific, USA). The protein concentration was performed by bicinchoninic acid (BCA) kit (Pierce Biotechnology, USA) and adjudged according to the standard curve. 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to fractionate 20 μg protein sample, subsequently transferred to polyvinylidene fluoride membranes (Millipore, USA). After blocking by 5% skim milk, the membranes were incubated with the primary antibodies overnight at 4°C overnight (Table 1). After washing, the membranes were incubated with...
LncRNA in hepatocellular carcinoma

Figure 2. LncRNA TUG1 expression after IncRNA TUG1 mimic/inhibitor plasmids transfection. A: Transfection rates were all more that 90% in four groups. B: Compared to NC group, the relative expression of IncRNA TUG1 was higher in IncRNA TUG1 mimic group, and lower in IncRNA TUG1 inhibitor group (both $P<0.01$). *$P<0.05$, **$P<0.01$.

Figure 3. Cells proliferation after IncRNA TUG1 mimic/inhibitor plasmids transfection. Compared to NC group, cells proliferation was increased in IncRNA TUG1 mimic group ($P<0.05$) and was decreased in IncRNA TUG1 inhibitor group ($P<0.01$). *$P<0.05$, **$P<0.01$.

Statistics

Statistics was performed using SPSS (SPSS, USA) and GraphPad prim 6.0 (GraphPad, USA). Data were presented in mean ± standard deviation. T test was carried out for comparison. $P<0.05$ (*) was considered significant, $P<0.01$ (**) and $P<0.001$ (***) were considered highly statistically significant.

Results

LncRNA TUG1 expression in HCC cells line

In order to explore the role of IncRNA TUG1 in HCC cells, qPCR assay was performed. As shown in Figure 1, IncRNA TUG1 expression was increased in SMMC 7721 cells ($P<0.001$), HepG2 cells ($P<0.01$) as well as BEL-7402 cells ($P<0.01$) compared to L-02 cells.

LncRNA TUG1 expression after IncRNA TUG1 mimic/inhibitor plasmids transfection

Transfection rates of SMMC 7721 cells were all more that 90% in NC1 mimic group, IncRNA TUG1 mimic group, NC2 inhibitor group and IncRNA TUG1 inhibitor group (Figure 2A). The relative expression of IncRNA TUG1 was higher in IncRNA TUG1 mimic group than that in NC1 mimic group ($P<0.01$), and lower expression of IncRNA TUG1 was observed in IncRNA TUG1 inhibitor group compared to NC2 inhibitor group ($P<0.01$) (Figure 2B).

Cells proliferation after IncRNA TUG1 mimic/inhibitor plasmids transfection

After IncRNA TUG1 mimic/inhibitor plasmids transfection, cells proliferation was evaluated by the CCK-8 assay. Cells proliferation was increased in IncRNA TUG1 mimic group compared to NC1 mimic group ($P<0.05$) and was decreased in IncRNA TUG1 inhibitor group compared to NC2 inhibitor group ($P<0.01$) at 48 h (Figure 3). These suggested that IncRNA TUG1 induced cells proliferation in HCC cells.

Cells migration after IncRNA TUG1 mimic/inhibitor plasmids transfection

The wound-healing assay was performed for measurement of cells migration. Compared to NC1 mimic group, the migration ratio of HCC cells was increased in IncRNA TUG1 mimic group ($P<0.05$), while cells migration rate was decreased in IncRNA TUG1 inhibitor group compared to NC2 inhibitor group ($P<0.01$) at 24 h, which indicated that IncRNA TUG1 promoted cells migration in HCC cells (Figure 4A, 4B).

the secondary antibodies for 1 h at room temperature (Table 1). Protein signaling was detected using an enhanced chemiluminescence (ECL) kit (Millipore, USA).

Statistics

Statistics was performed using SPSS (SPSS, USA) and GraphPad prim 6.0 (GraphPad, USA). Data were presented in mean ± standard deviation. T test was carried out for comparison. $P<0.05$ (*) was considered significant, $P<0.01$ (**) and $P<0.001$ (***) were considered highly statistically significant.
Cells invasion after lncRNA TUG1 mimic/inhibitor plasmids transfection

After plasmids transfection, cells invasion was detected by Matrigel assay. Cells invasion was promoted in lncRNA TUG1 mimic group compared to NC1 mimic group (P<0.05), and was repressed in lncRNA TUG1 inhibitor group compared to NC2 inhibitor (P<0.05) (Figure 5A, 5B). These results suggested that lncRNA TUG1 accumulated cells invasion in HCC cells.

Cells apoptosis after lncRNA TUG1 mimic/inhibitor plasmids transfection

In order to explore cells apoptosis after plasmids transfection, AV/PI assay was carried out. The knockdown of cells apoptosis rate was observed in lncRNA TUG1 mimic group compared to NC1 mimic group (P<0.05), also, the upregulation of cells apoptosis was found in lncRNA TUG1 inhibitor group compared to NC2 inhibitor group (P<0.05) (Figure 6A, 6B). Cells apoptosis-related protein was further detected by Western Blot assay. The expressions of C-Caspase were inhibited by lncRNA TUG1 mimic, and were promoted by lncRNA TUG1 inhibitor. And the expression of Bcl-2 was induced by lncRNA TUG1 mimic and was repressed by lncRNA TUG1 inhibitor (Figure 6C). These results indicated that lncRNA TUG1 inhibited cells apoptosis in HCC cells.

Expression of candidate target genes after lncRNA TUG1 mimic/inhibitor plasmids transfection

After plasmids transfection, lncRNA TUG1 mimic increased both mRNA and protein expressions of AURKA (P<0.05), and lncRNA TUG1 inhibitor decreased their expressions (P<0.05) compared to NC group, which suggested the positive regulation of lncRNA TUG1 on AURKA in HCC cells (Figure 7A, 7D). No difference of mRNA and protein expressions of SERPINE1 and BRAF between groups was observed (Figure 7B-D).
LncRNA in hepatocellular carcinoma

Discussion

In the current study, we observed that (1) LncRNA TUG1 expression was increased in SMMC 7721 cells, HepG2 cells and BEL-7402 cells compared to L-02 cells; (2) LncRNA TUG1 induced cells proliferation, cells migration as well as cells invasion, and inhibited cells apoptosis in HCC cells; (3) LncRNA TUG1 positively regulated AURKA expression in HCC cells.

LncRNAs, as important functional transcripts, play important roles in the tumorigenesis, metastasis, chemoresistance, prediction of therapy outcomes and viral hepatitis-related progression through regulating multiple genes and pathways in HCC [16-19]. These data suggest that LncRNAs serve as important regulators in HCC pathogeneses.

LncRNA TUG1, a 7598-bp lncRNA located on chromosome 22q12.2, has been reported dysregulated in several carcinomas [20]. For instance, a previous study discloses that LncRNA TUG1 is upregulated in HCC, which promotes cells proliferation and represses cells apoptosis by targeting Hedgehog signalling pathways interacted with mir-132 [21]. Another interesting study reveals that overexpression of LncRNA TUG1 is expressed in HCC tissues compared to matched normal tissues, and it promotes cells proliferation, colony formation, tumorigenicity but suppresses cells apoptosis in HCC cells through inhibiting transcription of Kruppel-like factor 2 (KLF2) [22]. Also, lncRNA TUG1 has been reported to correlate with the promotion of cells proliferation, migration and/or invasion in some kinds of carcinomas, including breast cancer, pancreatic cancer and renal cell cancer [9, 23, 24]. These researches indicate that LncRNA TUG1 acts as a regulator involving in the pathology of some cancer through mediating cells activities. Although these two previous studies demonstrate that LncRNA TUG1 promotes cells proliferation and inhibits cells apoptosis in HCC cells, the function of LncRNA TUG1 in other cells activities of HCC cells is still unclear. Therefore, in this study, we explored the functions of LncRNA TUG1 in HCC cells proliferation, migration, invasion as well as apoptosis, and found that LncRNA TUG1 promoted HCC cells proliferation,

Figure 6. Cells apoptosis after LncRNA TUG1 mimic/inhibitor plasmids transfection. A, B: Cells apoptosis rate was decreased in LncRNA TUG1 mimic group compared to NC1 mimic group, and increased in LncRNA TUG1 inhibitor group compared to NC2 inhibitor group. C: LncRNA TUG1 decreased C-Caspase 3 expression and increased Bcl-2 expression in HCC cells. *P<0.05, **P<0.01.
LncRNA in hepatocellular carcinoma

AURKA, a serine-threonine kinase, is located on chromosome 20q 13.2, which is interacted with the centrosome to influence chromosomal separation and mitotic spindle stability during mitosis [25]. To date, AURKA serves as an oncogenic factor to drive tumorigenesis and tumor progression in various carcinomas, including HCC, gastric cancer and breast cancer [26-28].

For example, AURKA has been reported to promote HCC cells invasion via facilitating epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties by targeting PI3K/AKT pathway [28]. As to gastric cancer, AURKA accumulates cells proliferation via the promotion of EMT by targeting the Wnt/β-catenin and PI3K/Akt signaling pathways [29]. Also, AURKA induces cells migration and invasion via the active regulation of AURKA/Akt/focal adhesion kinase (FAK) pathway in head and neck squamous cell cancer [30]. These data illustrate that AURKA affects cells activities through targeting multiple genes or pathways, thereby contributing to the development and progress of various cancer, such as HCC. In the present study, we found the positive regulation of lncRNA TUG1 on AURKA expression in HCC cells, suggested that lncRNA TUG1 might affect cell biological behaviors through targeting AURKA in HCC. Therefore, further study exploring the targeting genes of lncRNA TUG1 in HCC cells is greatly needed.

Figure 7. Expression of candidate target genes after lncRNA TUG1 mimic/inhibitor plasmids transfection. LncRNA TUG1 mimic increased both mRNA (A) and protein (D) expressions of AURKA ($P<0.05$), and lncRNA TUG1 inhibitor decreased their expressions ($P<0.05$) compared to NC group. No difference of mRNA and protein expressions of SERPINE1 (B, D) and BRAF (C, D) between groups was observed. *$P<0.05$, **$P<0.01$.

Cells migration and cells invasion, while it repressed cells apoptosis. These suggested that lncRNA TUG1 affects HCC pathology via mediating cells proliferation, cells migration, cells invasion as well as cells apoptosis.
In conclusion, lncRNA TUG1 promotes cells proliferation, migration and invasion while represses apoptosis, and upregulates AURKA expression in HCC cells.

Disclosure of conflict of interest

None.

Address correspondence to: Xia Wu, Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin 150081, China. Tel: +86-451-86297804; Fax: +86-451-86297804; E-mail: wuxia_spot@163.com

References

LncRNA in hepatocellular carcinoma

progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget 2017; 8: 65253-65264.

[22] Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P and Shu YQ. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer 2015; 14: 165.

