Original Article
Radionuclide imaging and therapy in malignant melanoma after survivin promoter-directed sodium iodide symporter gene transfer in vitro and in vivo

Zhen Zhao, Rui Huang, Huawei Cai, Bin Liu, Yu Zeng, Anren Kuang

Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China

Received November 9, 2018; Accepted December 26, 2018; Epub February 1, 2019; Published February 15, 2019

Abstract: This study aimed to develop a gene expression targeting method specific for the imaging and therapy of malignant melanoma A375 cells using the sodium iodide symporter gene under control of the survivin promoter (Ad-Sur-NIS). When compared to control Ad-Sur-GFP-treated cells, Ad-Sur-NIS resulted in significantly higher iodide uptake in all 50, 100, or 150 MOIs examined cells (P<0.001). In vitro clonogenic assay showed the inhibition rates induced by \(^{131}\)I were 94.8±12.4% in Ad-Sur-NIS, which was significantly higher than that in Ad-Sur-GFP infected cells (12.5±2.3%, P<0.001) or untreated cells (11.1±1.8%, P<0.001). In biodistribution studies, the tumor-to-muscle ratio in Ad-Sur-NIS infected tumors was higher than that in Ad-Sur-GFP infected tumors (16.34±4.43 vs 1.44±0.39, P<0.001). Moreover, mice that received the injection of Ad-Sur-NIS and \(^{131}\)I showed a significant delay in tumor growth. Taken together, Ad-Sur-NIS expresses functional NIS, resulting in intracellular accumulation of radionuclide in malignant melanoma A375 cells in vitro and in vivo.

Keywords: Malignant melanoma, sodium iodide symporter, survivin, pertechnetate imaging, radioiodine therapy

Introduction

Malignant melanoma is one of the most common cancer types and it has one of the most rapidly increasing incidences in many countries around the world [1]. In the United States, the 5-year (2010-2014) average annual percent change in melanoma increased 2.3% in males and 1.2% in females [2]. Currently, the main treatment is early surgical resection in patients with localized disease [3]. However, there have been limited options for effective systemic treatment of disseminated melanoma [4]. Therefore, there is a need to develop new anti-tumor approaches for disseminated or recurrent disease.

The sodium iodide symporter (NIS) is an integral plasma membrane glycoprotein mainly expressed in thyroid follicular cells [5]. The biological function of NIS is to mediate active transport of iodine, which is a crucial component for thyroid hormone biosynthesis [6]. This transporting ability of NIS has been successfully used for more than 70 years in radioiodide therapy of differentiated thyroid carcinoma, where radioactive iodide molecules (\(^{131}\)I) are used to internally radiate cancer cells of thyroid origin. Based on its characterization as a novel diagnostic and therapeutic gene, the cloning of the NIS gene has paved the way for the development of a novel gene therapy strategy for the treatment of cancers of nonthyroid origin based on targeted NIS gene transfer followed by radiiodine imaging and therapy [7-9].

Survivin, a novel member of the inhibitor of apoptosis protein family, is highly expressed in tumors and embryonic tissues but is expressed at low levels in normal terminally differentiated adult tissues [10]. Overexpression of survivin correlates with poor clinical outcome, tumor recurrence, and therapeutic resistance [11]. These unique characteristics of survivin make it an exciting potential transcriptional activation for cancer treatment [12, 13]. In previous studies, we have proven the feasibility of nonthyroidal radiiodine therapy after induction of iodide uptake by local adenoviral NIS gene transfer using tumor-specific survivin promoters (Ad-Sur-
Sodium iodide symporter and malignant melanoma

NIS), to specifically target NIS expression to prostate, liver, and lung cancer cells [14-16].

In the current study, we therefore examined accumulation and therapeutic efficacy of radioactive iodide in malignant melanoma A375 cells following Ad-Sur-NIS gene transfer in vitro and in vivo.

Materials and methods

Cell culture

The malignant melanoma cell line A375 was purchased from the American Type Culture Collection (ATCC, Rockville, MD, USA). Cells were cultured maintained in RPMI 1640 medium supplemented 10% calf serum (Gibco, Carlsbad, CA, USA) and 1% penicillin/streptomycin. Cells were maintained at 37°C and 5% CO₂ in an incubator with 95% humidity.

Production of recombinant adenovirus and cell infection

The recombinant adenovirus Ad-Sur-NIS, which uses the survivin promoter to drive NIS expression, was used as previously described [16]. The recombinant adenovirus Ad-Sur-GFP, which uses the survivin promoter to drive GFP expression, was used as a negative control [16]. The A375 cells were added into 6-well plates with density of 1×10⁶ cells per well, and then incubated for 48 h in RPMI 1640 medium prior to assay. The cells were then infected with 50, 100 or 150 multiplicities of infection (MOI) Ad-Sur-NIS or Ad-Sur-GFP. After 2 h infection, the media were replaced with fresh culture media, and virus-infected cells were further maintained.

In vitro ¹²⁵I uptake experiments

After 48 h infection, the cells were incubated with 3.7 kBq of ¹²⁵I in 1 mL of medium without serum for 30 min. Cells were washed twice with cold PBS followed by lysis using 0.5 mL trypsin for each sample. Radioactivity was quantified with a γ-counter (No.262 Nuclear Instrument Factory, Xi’an, China).

To perform the inhibition experiments, the cells were incubated with both 300 μM KClO₄ and ¹²⁵I for 30 min followed by the quantification of ¹²⁵I uptake as described above.

In vitro clonogenic assay

The procedure was performed as previously described [15]. In brief, the A375 cells transfected with Ad-Sur-NIS or Ad-Sur-GFP were incubated in RPMI-1640 medium containing 370 kBq/ml ¹³¹I for 7 h. After incubation, cells were then seeded onto six-well plates at a density of 1000 cells per well. After 1 week, colonies containing more than 30 cells were counted. All experiments were performed in triplicate. Results were expressed as the percentage of inhibited cells.

In vivo scintigraphic images

Animal experiments were approved by the Sichuan University Animal Care and Use Committee. Tumors were established in 6-week-old nude mice by subcutaneous injection of 1×10⁷ A375 cells per mouse. The experiments started until the tumors achieved a diameter of 5 mm. The Ad-Sur-NIS (1×10⁹ PFU) or Ad-Sur-GFP (1×10⁹ PFU) were injected intra-tumorally by group (3 mice per group) for gene transfecting in tumors.

At 2 days after adenovirus transfection, scintigraphic images were acquired. Mice received intravenously 18.5 MBq ⁹⁹mTcO₄⁻ followed by imaging with a γ camera (Philips Medical Systems, Milpitas, CA) 2 h after pertechnetate exposure. The used matrix size was 256×256, and this made the pixel size 1.08×1.08 mm.

Biodistribution of ¹²⁵I in the tumor-bearing mice

For biodistribution studies, mice were injected with Ad-Sur-NIS or Ad-Sur-GFP as described above followed by intravenous injection of 370 kBq ¹²⁵I 48 h later. Two hours after ¹²⁵I injection, the mice were sacrificed, tumor and muscle were dissected and weighed, and radioiodide uptake was measured in a γ-counter. The results were reported as the tumor-to-muscle (T/M) ratio.

In vivo ¹³¹I therapeutic experiments

Experiments started when tumors had reached 4 to 5 mm in diameter after a 10-d pretreatment with 5 mg/l thyroxine (Sigma-Aldrich, St Louis, MO) in the drinking water, to suppress thyroidal iodine uptake. The mice were random-
Sodium iodide symporter and malignant melanoma

ized into two groups (5 mice per group): the first group received the injection dose of Ad-Sur-NIS at 1×10^9 PFU; the second group received the injection dose of Ad-Sur-GFP at 1×10^9 PFU. On 2 days after the injection of Ad-Sur-NIS or Ad-Sur-GFP, all mice received 111 MBq 131I.

Tumor size was measured at 5-day intervals and the volume was calculated using the formula: $0.5 \times \text{length} \times \text{width}^2$. All mice were investigated over a total of 25 days and then euthanized.

Immunohistochemical analysis of NIS and Ki67 expression

To detect the NIS and Ki67 expression, resected tumors from nude mice were fixed in 4% paraformaldehyde for routine histopathological examination with immunohistochemical (IHC) examination with anti-NIS monoclonal antibody (Novus, Littleton, USA) and anti-Ki67 monoclonal antibody (Abcam, Cambridge, UK) [16, 17].

Statistical analysis

All data were represented as mean ± standard derivation. For in vitro cell and in vivo experiments, statistical significance was tested using Student’s t-test, and statistical significance was achieved when the P value was <0.05.

Results

125I uptake studies in vitro

To assess the functionality of the NIS expressed from the virus, A375 cells were infected with 50, 100, or 150 MOIs Ad-Sur-NIS or Ad-Sur-GFP followed by exposure to 125I and quantification of iodide accumulation (Figure 1A). When compared to control Ad-Sur-GFP-treated cells, Ad-Sur-NIS resulted in significantly higher iodide uptake in all 50, 100, or 150 MOIs examined cells ($P<0.001$). In comparison with 50 or 150 MOI infection, 100 MOI Ad-Sur-NIS caused up to 1.8 or 1.3 times higher iodide accumulation in cells. In vitro clonogenic assay, the inhibition rates induced by 131I were 94.8±12.4% in Ad-Sur-NIS, which was significantly higher than that in Ad-Sur-GFP infection (12.5±2.3%, $P<0.001$) or untreated cells (11.1±1.8%, $P<0.001$).

Clonogenic assay of A375 cells

Cell viability assay was conducted for evaluation of the radioiodine sensitivity in these transgene cells by incubating cells with infected with 370 kBq 131I for 7 h. The inhibition rates induced by 131I were 94.8±12.4% in Ad-Sur-NIS, which was significantly higher than that in Ad-Sur-GFP infected cells (12.5±2.3%, $P<0.001$) or untreated cells (11.1±1.8%, $P<0.001$) (Figure 1B). These results demonstrated that coupling Ad-Sur-NIS infection and 131I treatment specifically and efficiently led to A375 cell death in vitro, indicating potential for iodine-131 diagnosis and radiotherapy.

99mTcO$_4^-$ scintigraphic imaging and biodistribution studies

The specific NIS expression was demonstrated in scintigraphic images. The A375 tumors infected with Ad-Sur-NIS showed significant 99mTcO$_4^-$ uptake, with the exception of normal
Sodium iodide symporter and malignant melanoma

The biodistribution data are provided in Figure 2C. The T/M ratio in Ad-Sur-NIS infected tumors was higher than that in Ad-Sur-GFP infected tumors (16.34±4.43 vs 1.44±0.39, P<0.001). The tumor specificity of Ad-Sur-NIS was confirmed by biodistribution, which exhibited selective uptake of 125I in tumors.

Radionuclide therapy study in vivo

Mice that received the injection of Ad-Sur-NIS and 131I showed a significant reduction in tumor growth. In contrast, mice receiving the injection of Ad-Sur-GFP and 131I showed an exponential tumor growth (P<0.001) (Figure 3A). These results suggest that the injection of Ad-Sur-NIS and 131I can reduce tumor growth in vivo, but the injection of Ad-Sur-GFP and 131I showed no therapeutic effect.

Immunohistochemical staining of NIS and Ki67 expression

Three days after the start of treatment, mice were sacrificed and A375 xenografts were dissected and processed for immunohistochemical analysis using a NIS-specific antibody. Analysis showed high levels of NIS-specific immunoreactivity in Ad-Sur-NIS-infected tumors (Figure 3B). In contrast, the tumors infected with the injection of Ad-Sur-GFP exhibited no NIS-specific immunoreactivity (Figure 3C).

Eight days after the start of treatment, mice were killed and tumors were dissected and processed for immunohistochemical analysis using a Ki67-specific antibody. Ad-Sur-NIS-treated tumors exhibited a significantly lower proliferation index after 131I therapy when compared with Ad-Sur-GFP-treated tumors (Figure 3D, 3E).

Discussion

Recurrent or advanced malignant melanoma requires new treatment approaches [18, 19]. One developmental concept is combination of radiation with gene therapy. In our recent studies, Ad-Sur-NIS has been used as a transgene for concentrating radioiodide to cancers of non-thyroid origin, for example, in hepatocellular, lung, and prostate cancers [14-16]. This successful experience exemplified our efforts toward the application of Ad-Sur-NIS to malignant melanoma. Therefore, the present study aimed to investigate Ad-Sur-NIS mediating radioactive iodide uptake into malignant melanoma A375 cells.

In our current study, A375 cells infected with Ad-Sur-NIS showed significantly higher 125I...
uptakes than Ad-Sur-GFP-infected cells, and 100 MOI Ad-Sur-NIS indicated the best transgene efficiency with the maximum 125I uptake. The amount of accumulated 131I has been shown to be sufficiently high to selectively kill Ad-Sur-NIS-transduced A375 cells in a clonogenic assay. The result thus demonstrated that coupling Ad-Sur-NIS and 131I treatments in vitro efficiently and specifically led to cell killing. Scintigraphy and biodistribution studies confirmed that the specific accumulation of the radionuclide also occurred in the Ad-Sur-NIS-infected A549 tumors in vivo.

Most importantly, Ad-Sur-NIS gene transfer resulted in tumor-specific iodide uptake activity in A375 tumor-bearing mice, which was sufficiently high for a significant therapeutic effect of 131I. After Ad-Sur-NIS application followed by 131I injection, tumor-bearing mice showed a significant delay of tumor growth. In addition, immunofluorescence analysis showed markedly reduced proliferation after Ad-Sur-NIS gene transfer followed by 131I application, suggesting radiation-induced tumor stromal cell damage in addition to tumor cell death. The crossfire effect of 131I with a maximum path length of up to 2.4 mm might be responsible for stromal cell damage leading to reduced secretion of growth-stimulatory factors, thereby enhancing therapeutic efficacy [20].

In conclusion, radioiodine uptake was successfully increased in A375 tumors following tumor-specific survivin promoter-targeted NIS gene transfer in vitro and in vivo.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81201118, 81471692 and 81301250).

Disclosure of conflict of interest

None.

Address correspondence to: Anren Kuang, Department of Nuclear Medicine, West China Hospital of Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China. Tel: +86-18980601582; Fax: +86-28-85422155; E-mail: kuanganren@263.net

References

Sodium iodide symporter and malignant melanoma

