Original Article

Early articular cartilage degeneration in a developmental dislocation of the hip model results from activation of β-catenin

Bo Ning1,2, Jun Sun1, Yi Yuan1, Jie Yao1, Peng Wang2, Ruixue Ma2

1Department of Pediatric Orthopaedic, Anhui Provincial Children’s Hospital, 39 Wangjiang Road, 230051, Hefei, China; 2Department of Pediatric Orthopaedic, Children’s Hospital of Fudan University, 399 Wanyuan Road, 201102, Shanghai, China

Received January 31, 2014; Accepted March 2, 2014; Epub March 15, 2014; Published April 1, 2014

Abstract: Developmental dislocation or dysplasia of the hip (DDH) is one of the most common deformities in children. Osteoarthritis (OA) is the most frequent long-term complication. The molecular mechanism of early articular cartilage degeneration in DDH is still unclear. It is well known that β-catenin plays a crucial role in articular cartilage degeneration. The objective of this study was to verify the relationship between β-catenin and DDH cartilage degeneration. We used a DDH model that was established by modification of swaddling position in newborn Wistar rats. The hips were isolated from the DDH model rats and untreated control group at the age of 2, 4, 6 and 8 weeks. β-Catenin gene and protein were investigated by quantitative (q)RT-PCR and immunohistochemistry. Collagen X and matrix metalloproteinase (MMP)-13, markers of early cartilage degeneration, were assessed by qRT-PCR. Primary chondrocytes were cultured from cartilage of two groups at the age of 8 weeks. Expression of β-catenin, collagen X and MMP-13 was detected. Continued high expression of β-catenin was observed in cartilage from DDH model rats. mRNA and protein expression of β-catenin was significantly increased in primary chondrocytes of the DDH model compared with the control group. Collagen X and MMP-13 expression was higher in the cartilage and chondrocytes from DDH model rats than the control group. Our findings suggest that early cartilage degeneration in DDH may result from activation of β-catenin signaling.

Keywords: β-catenin, hip dysplasia, cartilage degeneration, osteoarthritis

Introduction

Developmental dislocation or dysplasia of the hip (DDH) is one of the most common diseases in pediatric orthopedics. The reported incidence rate of DDH is 2.5-5% [1]. The cause of DDH is still unknown although some risk factors, including female sex, firstborn child, genetic factors and swaddling clothes, have been identified [2, 3]. The swaddling position after birth may result in DDH, therefore, many studies have used a DDH model in different animals, which is established by extending the hip and knee [4]. The straight leg swaddling position of newborn rats was modified to construct the DDH model in our previous study [5].

Osteoarthritis (OA) is the most frequent long term complication of DDH. Compared with the normal population, DDH OA has an early age of onset and serious clinical features, and most patients need to undergo total hip arthroplasty (THA) [6]. The present study confirmed that there was cartilage degeneration in the early stage of DDH [5]. Poor containment of the acetabulum and femoral head in DDH creates abnormal forces in the hip joints, which play an important role in DDH cartilage degeneration. Although the treatment of DDH has made great progress because of early screening and improved surgery in recent years [7, 8], the long-term incidence of OA has not decreased [6, 9]. Therefore, the abnormal forces may not be the exclusive factor of cartilage degeneration in DDH. DDH is a developmental disease, thus, we hypothesize that cartilage degeneration in the early stage of DDH may partly result from growth factors.
β-catenin in developmental dislocation of the hip

In recent years, many studies have shown that β-catenin and its Wnt signaling pathway play a crucial role in articular cartilage formation and degeneration. Transgenic studies have shown that β-catenin promotes the maturation of growth plate chondrocytes after cartilage formation [10] and lack of signaling leads to defects in postnatal cartilage development [11]. Some studies have shown that β-catenin plays a critical role throughout chondrogenesis and chondrocyte maturation [12, 13]. However, activation of β-catenin can lead to cartilage degeneration and OA progression. In cartilage of human OA patients, high expression levels of β-catenin have been detected [11, 14]. Conditional activation of β-catenin signaling in adult mouse articular chondrocytes leads to an OA-like phenotype [15]. In addition, functional deletion of the Frizzled-related protein in a murine model of OA results in disease exacerbation [16, 17]. A dual function of β-catenin in articular cartilage growth and degeneration at different stages of postnatal cartilage development has been confirmed in rats [18]. All of these studies strongly suggest that the β-catenin signaling pathway plays a crucial role in cartilage formation and development, and is involved in the etiology and progression of OA.

Previous studies have demonstrated degenerative changes in the articular cartilage in the early stage of DDH [5, 19]. However, the molecular mechanism of early articular cartilage degeneration and OA is still unclear. As a link between cartilage development and degeneration, the function of β-catenin in DDH early cartilage degeneration has not been reported. We hypothesized that DDH cartilage may lead to high expression of β-catenin, and result in cartilage degeneration. To investigate the relation between β-catenin and cartilage degeneration in the early stage of DDH, we detected expression of β-catenin in cartilage at different stages of the rat DDH model and control group by immunohistochemistry and quantitative (q) RT-PCR. Collagen X and matrix metalloproteinase (MMP)-13 are well-known early cartilage degenerative marker genes [20-23], and were detected in sections and chondrocytes.

To the best of our knowledge, this is the first report of the relation between β-catenin and cartilage degeneration in a DDH model.

Materials and methods

DDH model and tissue collection

Wistar rats were randomly divided into DDH and control groups. In each group, 80 rats were used and sacrificed by overdose anesthesia at ages corresponding to human developmental stages of toddler (2 weeks), child (4 weeks), teenager (6 weeks), and adult (8 weeks). Cartilage from the hip joints was used for immunohistochemistry, qRT-PCR and cell culture.

The DDH model was induced by modifying the swaddling position with fixation of the hind limbs in extension and adduction in newborn Wistar rats for 10 days [5]. The rats were fed their mother's milk during fixation. The weight and sex of the rats in each group were determined. This study was approved by the local ethics commission.

Immunohistochemistry

Isolated hip joints at different ages were fixed in 4% paraformaldehyde, decalcified in 10% EDTA until complete demineralization, and then embedded in paraffin. Ten representative sections (4 μm) of each joint from various depths were mounted on slides. Immunohistochemistry was carried out using a standard procedure [8]. In brief, the paraffin was removed, and the sections were incubated overnight at 4°C with rabbit anti-rat β-catenin monoclonal antibody at a dilution of 1:50 (Abcam, Cambridge, MA, USA). For the negative control reaction, the primary antibody was omitted. Thereafter, sections were detected with Envision Detection Kit (Dako, Glostrup, Denmark). Slides were visualized under a microscope.

Cell isolation and cell culture

Hip joints isolated from 8-week-old rats in each group were washed in D-Hanks solution immediately upon excision. The femoral head and acetabular articular cartilage were harvested.
rewashed with D-Hanks, and completely digested by soaking in 0.25% trypsin (Gibco-Invitrogen, Carlsbad, CA, USA) for 15 min in a 37°C shaking water bath. A solution of 0.2% collagenase II in 10% fetal bovine serum (FBS) and Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) was added and the solution was further incubated with shaking for 3 h. A 2-ml aliquot of the digested product was collected every hour. The
digested product was passed through a 100-µm Swinex filter to remove any residual fragments, and the filtrate was centrifuged. The pelleted cells were resuspended in complete medium (DMEM with 10% FBS, 1% penicillin/streptomycin, 100 mM L-glutamine). Cells were counted and plated at the appropriate density in 25-cm culture flasks for incubation in a 5% CO₂-air mixture at 37°C. The media were refreshed every 3-4 days. All experiments were conducted using first-passage cells. The chondrocytes were identified by the presence of collagen II in immunofluorescence and toluidine blue staining.

Immunofluorescence microscopy

Articular chondrocytes cultured in six-well plates in each group were fixed with 4% paraformaldehyde for 10 min and blocked with 10% goat serum in PBS supplemented with 0.2% Triton X-100 (PBST; Sigma). Primary antibody incubation was performed overnight at 4°C for antibodies (Abcam) against collagen II and β-catenin. After washing, secondary antibody incubation was carried out for 1 h at room temperature with anti-rabbit AlexaFluor 488 antibody (1:50, Invitrogen). Cells were imaged by fluorescent microscopy (Leica Microsystems, Buffalo Grove, IL, USA).

RNA extraction and qRT-PCR

Total RNA from cartilage and chondrocytes was extracted using Trizol reagent (Invitrogen-Life Technologies, Paisley, UK). The purity and amount of RNA were determined by measurement of the OD260/280 ratio. All samples showed purity indices between 1.8 and 2.0. Preservation of 28S and 18S rRNA species was used to assess RNA integrity. All the samples included in the study had prominent 28S and 18S rRNA components. Reverse transcription of 1 µg RNA to cDNA was performed using ReverTra Ace qPCR RT kit (TOYOBO, Osaka, Japan) according to the manufacturer’s instructions. The yield was quantified spectrophotometrically.

qRT-PCR was performed using 5 µl cDNA (100 ng), 2 µl each primer (10 µM), 25 µl SYBR Green Realtime PCR Master Mix (TOYOBO), and 16 µl water in a total volume of 50 µl. The target genes were MMP-13, Collagen X and β-catenin; expression of which was normalized to the housekeeping gene β-actin. All primers used are shown in Table 1. qRT-PCR was performed.
using ABI PRISM 3730HT Sequence Detection System (ABI, CA, USA), which was programmed to an initial step of 10 min at 95°C for polymerase activity, followed by 40 cycles of 15 s denaturation at 95°C, 15 s annealing at 60°C, and 45 s extension at 72°C. Absence of non-specific PCR products was checked using melting curve and electrophoresis analyses. Reactions were done in triplicate and the average values were used. The relative quantification of target genes was determined using the ΔΔCT method. Results are expressed as the fold change of relative expression in the DDH model group compared with that in the control group.

Statistical analysis

Descriptive statistical analysis was performed using mean values and standard deviations. Data were analyzed using the commercially available statistical software SPSS 16.0 (SPSS, Chicago, IL, USA) and two-tailed Student’s t test. P < 0.05 was considered significantly different.

Results

Dislocation of the hip in the DDH model

Poor containment between acetabulum and femoral head was found in the DDH model. A flat and underdeveloped femoral head was observed with greater correspondence to the acetabulum in the DDH model (Figure 1B). However, the containment between acetabulum and femoral head was excellent in the control group (Figure 1A).

Expression tendency of β-catenin in DDH cartilage and control group is different

To investigate the role of β-catenin in DDH cartilage, we detected expression of β-catenin in

Figure 4. Expression of β-catenin mRNA in articular cartilage of DDH and control group at different ages: (A) showed continued high expression of β-catenin in DDH group (B) showed the trend of expression of β-catenin mRNA in two groups. (C and D) Showed higher expression of Collagen X and MMP-13 in DDH model at the ages of 4, 6, and 8 weeks. **P < 0.01.
β-catenin in developmental dislocation of the hip

In the control group, immunohistological analysis revealed that β-catenin was most highly expressed at 2 weeks of age. Thereafter, expression of β-catenin steadily decreased in an age-dependent manner (Figure 2). However, in the DDH model, there was no decrease in the expression of β-catenin at different ages (Figure 3). Parallel analysis of β-catenin mRNA expression by qRT-PCR indicated that gene transcription followed the same expression pattern as was observed by immunohistochemistry between the two groups (Figure 4A) ($P < 0.01$).

These results indicated that the β-catenin signaling pathway was present, and presumably active, during early cartilage growth but disappeared and did not contribute to processes in adult cartilage. However, high expression of β-catenin in DDH cartilage was continued with increased age (Figure 4B).

Articular cartilage degeneration was observed in DDH model

The chondrocytes of the superficial zone in DDH model cartilage were rounded, aggregated, and formed clusters. The surface of cartilage was irregular and eroded, and cleft formation was seen in DDH model rats (Figure 3C and 3D). However, the surface of the cartilage from the control group was smooth and its chondrocytes were flattened and aligned with the surface.

To determine cartilage degenerative changes in the DDH model, Collagen X and MMP-13, markers of early cartilage degeneration, were detected by qRT-PCR in articular cartilage from the two groups. Fold changes in expression of Collagen X and MMP-13 at different ages in the...
β-catenin in developmental dislocation of the hip

Figure 4. Expression of Collagen X and MMP-13 mRNA was increased in the DDH model group at 4, 6, and 8 weeks of age, and the difference between the two groups at these ages was significant ($P < 0.01$). These results revealed that degenerative changes were observed in early articular cartilage in the DDH model.

Expression of β-catenin was increased in chondrocytes of the DDH model

Our previous study confirmed that activation of β-catenin led to degenerative changes in articular chondrocytes at the age of 8 weeks [18]. Collagen II and toluidine blue staining were used to identify the chondrocytes (Figure 5A and 5B). We found high expression of β-catenin in DDH cartilage. Therefore, the chondrocytes were cultured from the DDH model and control group at the age of 8 weeks. Expression of β-catenin was detected by immunofluorescence and qRT-PCR. Expression of β-catenin protein and mRNA in chondrocytes from the DDH model was significantly increased (Figures 5D and 6A) ($P < 0.05$). Thus, the β-catenin signaling pathway was activated in chondrocytes from the DDH model.

Increased mRNA expression of Collagen X and MMP-13 in chondrocytes of the DDH model

We determined the relation between β-catenin and early cartilage degeneration in the DDH model. Considering that high expression of β-catenin chondrocytes of the DDH model at the age of 8 weeks, the expression of the articular chondrocytes early degeneration gene markers were examined. The results are shown in Figure 6. Higher mRNA expression of Collagen X and MMP-13 was observed in the DDH model group (Figure 6B and 6C) ($P < 0.01$). These results suggest that activation of β-catenin may lead to early degeneration of chondrocytes in the DDH model group.

Discussion

DDH is one of the most common deformities in children. Some studies suggest that DDH is one of the predisposing factors for OA and the reasons may be mechanical [6, 19]. As provision of adequate and suitable treatment in early stages of DDH because of progression of early screening and management [8, 24, 25], the relative normal joints in function and image were acquired. However, the incidence rate of
long-term degenerative OA remains higher than in the normal population [6, 26]. These studies indicated that mechanical factors were not the only reasons for transformation of DDH to OA. Given that DDH is a developmental disease, early articular cartilage degeneration may result from abnormal joint development.

The function of the β-catenin signaling pathway in normal bone formation, cartilage development and cartilage degeneration is well established [18, 27, 28]. In the present study, expression of β-catenin in the control group decreased in an age-dependent manner. However, in the DDH model group, continued high expression of β-catenin was observed. It is well known that β-catenin is essential during cartilage development. However, β-catenin promotes degeneration while articular cartilage undergoes maturation. Therefore, continued high expression of β-catenin may result from persistence of developmental factors in articular cartilage in the DDH model. Early cartilage degeneration in the DDH model has been confirmed previously [5, 19]. In our study, morphology of articular cartilage in the DDH model differed from that in the control group. Loss of the smooth surface of articular cartilage and aggregates and clusters of articular chondrocytes were detected. Moreover, surface fibrillation and vertical clefts were observed with increasing age. qRT-PCR revealed that Collagen X and MMP-13 [5, 29, 30], markers of early cartilage degeneration, were upregulated in the articular cartilage of the DDH model compared with the control group at the age of 4, 6 and 8 weeks. Therefore, the present study confirmed that early degeneration of cartilage occurred in the DDH model. These results suggest that there may be dependency between high expression of β-catenin and cartilage degeneration in the DDH model group.

In the present study, chondrocytes were cultured in the DDH model and control group at the age of 8 weeks. Higher expression of β-catenin protein was observed in the DDH model group compared with the control group. Previous studies have confirmed that activation of β-catenin leads to degenerative changes in normal chondrocytes [14, 15, 18]. Given the high expression of β-catenin in DDH cartilage and chondrocytes, we presumed that degenerative changes occurred in DDH articular chondrocytes. To test this hypothesis, we detected the expression of Collagen X and MMP-13 in articular cartilage chondrocytes. qRT-PCR showed differences in Collagen X and MMP-13 between the two groups, indicating that higher gene expression was involved in the DDH model. Overall, these findings support the idea that articular chondrocytes from DDH model rats display high expression of β-catenin and degenerative changes compared with the control group.

In summary, OA is one of the most common long-term complications of DDH. The molecular mechanism is still unknown. Our study revealed that continued high expression of β-catenin may result from persistence of developmental factors in the cartilage of the DDH model. Finally, high expression of β-catenin led to cartilage degeneration. To the our best of knowledge, this is the first study to investigate the molecular mechanism of transition of DDH to OA.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Ruixue Ma, Department of Pediatric Orthopaedic, Children's Hospital of Fudan University, 399 Wanyuan Road, 201102, Shanghai, China. Tel: +86-2164931101; Fax: +86-2164931914; E-mail: ruixuemaning@gmail.com

References

[6] Thomas SR, Wedge JH and Salter RB. Outcome at forty-five years after open reduction and in-
β-catenin in developmental dislocation of the hip

[27] Day TF, Guo X, Garrett-Beal L and Yang Y. Wnt/beta-catenin signaling in mesenchymal...
progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeleogenesis. Dev Cell 2005; 8: 739-750.

