Original Article
Differential expressions of BMPR1α, ACTN4α and FABP7 in Hirschsprung disease

Weilin Wang1, Zhenwei Su2, Dong Chen1, Jie Mi1, Hong Gao1

1Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang, Liaoning, 110004, The People’s Republic of China; 2Department of Pediatric Surgery, Women and Children Hospital Dandong City, Liaoning 118002, The People’s Republic of China

Received February 11, 2014; Accepted April 10, 2014; Epub April 15, 2014; Published May 1, 2014

Abstract: Hirschsprung disease (HSCR) is characterized by the absence of intramural ganglion cells in the nerve plexuses of the distal gut. Recent studies have shown that the bone morphogenetic protein receptor-type IA (BMPR1α), actinin-alpha 4 (ACTN4α) and fatty acid binding protein 7 (FABP7) play important roles in the differentiation and development of neurons. The aganglionic (stenotic) and the ganglionic (normal) colon segment tissues of 60 HSCR patients were collected to investigate the expression pattern of BMPR1α, ACTININ-4α and FABP7 using RT-PCR, quantitative real-time RT-PCR (qRT-PCR) and immunohistochemical staining. The mRNA and protein expressions of BMPR1α and ACTN4α were higher in the stenotic colon segment tissue than those in the normal colon segment tissue. However, the mRNA and protein expressions of FABP7 were lower in the stenotic colon segment tissue than those in the normal colon segment tissue. The study in HSCR patients, findings in mRNA and protein alterations to expecting provide more information to in order to find some clue for the pathomechanism of HSCR disease.

Keywords: Hirschsprung disease (HSCR), BMPR1α, ACTININ-4α and FABP7, aganglionic (stenotic) colon segment, ganglionic (normal) colon segment

Introduction
Hirschsprung disease (HSCR) is characterized by segmental aganglionosis of the terminal bowel. Neurons of the enteric nervous system (ENS) arise from neural crest, migrate and colonize intestinal muscle coat where they proliferate and differentiate. The first pathophysiologic hypothesis on HSCR suggests an absence of neural cell migration. The most recent hypothesis involves disorders of their homing and/or their differentiation due to an altered intestinal microenvironment. HSCR most occurs in neonates and early childhood, with symptoms ranging from chronic constipation to acute ileus. Its incidence is approximately one in 5000 live newborns, with a male predominance (3:1 to 5:1) [1]. The disease has a complex genetic etiology with susceptibility genes including the RET members [2, 3], endothelin-B receptor (EDNRB), endothelin 3 (EDN3), SOX-10 [4-6] and smad-interacting protein-1 (SIP1) [zinc finger homeobox (ZFHX1B)] [7].

Recent evidence suggests that bone morphogenetic protein receptor-type IA (BMPRs) can initiate colorectal tumorigenesis via the mixed juvenile-hyperplastic polyposis-carcinoma pathway by functioning in an analogous manner [8]. The functions of actinin-alpha 4 (ACTN4α) are likely to cross-link and bundle f-actin filaments and play a role in signal transduction [9]. Fatty acid binding proteins (FABPs) constitutes a multi-gene family encoding intracellular lipid-binding proteins [10].

In this study, we using RT-PCR, quantitative real-time RT-PCR (qRT-PCR) and immunohistochemical staining detected expression of mRNA and protein expressions of BMPR1α, ACTN4α and FABP7 between the stenotic colon segment tissue and the normal colon segment tissue in HSCR patients, expecting to disclose genes alterations related to bowel malfunction of HSCR.

Materials and methods

Patients and specimens
Tissue specimens from 60 HSCR patients. The patients ranged from 0.5 to 3.1 years old with
Expression analysis of BMPR1α, ACTN4α and FABP7

Table 1. RT-PCR and qRT-PCR primers

<table>
<thead>
<tr>
<th>Gene name</th>
<th>GenBank accession no.</th>
<th>Sequence (5’-3’)</th>
<th>Amplicon</th>
<th>Annealing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMPR1α</td>
<td>M_004329</td>
<td>F AAG TTC TGG TAG TGG GTC T</td>
<td>168 bp</td>
<td>50°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R CTG GCT TCT TCA GTG GTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTN4α</td>
<td>M_004924</td>
<td>F GAC GCC GAT AGG GA</td>
<td>109 bp</td>
<td>53°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R TGA CGG TGG TGT AGG G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FABP7</td>
<td>M_001446</td>
<td>F AGG CTT TCT GTG CTA C</td>
<td>118 bp</td>
<td>51°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R ATT ACC GTT GGT TTG G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>M_002046</td>
<td>F GGG AAG GTG AAG GTC G</td>
<td>228 bp</td>
<td>51°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R GAA GAT GGT GAT GGG ATT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The relative coefficient of the BMPR1α, ACTN4α and FABP7 genes in the two segments (means ± SD)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Samples</th>
<th>Stenotic segment</th>
<th>Normal segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMPR1α mRNA</td>
<td>60</td>
<td>0.83 ± 0.19</td>
<td>0.31 ± 0.13</td>
</tr>
<tr>
<td>ACTN4α mRNA</td>
<td>60</td>
<td>0.79 ± 0.15</td>
<td>0.22 ± 0.15</td>
</tr>
<tr>
<td>FABP7 mRNA</td>
<td>60</td>
<td>0.19 ± 0.07</td>
<td>0.67 ± 0.18</td>
</tr>
</tbody>
</table>

RT-PCR was done with a 50 µl reaction system composed of cDNA 0.1 µg/µl, each primer 10 µg/L, Taq-polymerase 1 U/µl, etc. The PCR condition included force-denaturation at 94°C for 5 minutes, denaturation at 94°C for 1 minute, renaturation shown (in Table 1) for 1 minute, elongation at 72°C for 1 minute, totally for 35 cycles. Then it stretched at 72°C for 7 minutes. The products were visualized in 2% agarose gel electrophoresis, the patterns were analyzed by the G-Box Synyene system software, and the quantity of genes was observed. The calculated relative coefficient was equal to the intensity of the goal gene as divided by the expressive intensity of GAPDH.

qRT-PCR

The total RNA of each sample was extracted respectively according to the description of the RT-PCR kit (QIAGEN Ltd., Crawley, West Sussex, UK). The optical density value (OD value) of RNA was determined and calculated by the equation, A260/A280. Then cDNA was synthesized by reverse transcription in 20 µl reaction buffer containing con-RNA 1 µg, M-MLV 200 U/µl, primer 10 µg/L. The reaction was continued for 1 hour at 37°C, and then stretched for 10 minutes at 95°C. The reactant was tacho-centrifuged. The amplification of GAPDH gene in separate tubes was used as internal semi-quantitative control. The primers used are listed in Table 1. Every primer pair was checked by sequencing the PCR product to ensure the specificity of amplification.

qRT-PCR was performed in triplicate for each cDNA (Superscript™ II Rnase H-Reverse Transcriptase, SYBR Greenl) with SYBR green PCR Master mix (TaKaRa Biotechnology Co.) and the LightCycler (Roche Molecular Biochemicals, Co.). Control reactions were performed omitting reverse transcriptase from the cDNA synthesis. The RNA content of samples was normalized based on GAPDH amplification. Conditions for PCR amplification of BMPR1α, ACTN4α and FABP7 genes fragments are shown in Table 1. SYBR Green I was used as the detection System. Reactions were done in 25 µl volumes containing 200 nM of each primer, 1 µl cDNA (corresponding 1–3 ng), and 12.5 µl 2 × SYBR Green Master Mix Reagents. At last, the qRT-PCR was done with a 25 µl reaction system composed of 2 × SYBR green mixed buffer 25 µl. The reaction condition was: force-degeneration, 50°C 10 seconds; degeneration, 95°C 10
Expression analysis of BMPR1α, ACTN4α and FABP7

minutes; denaturation, 95°C 15 seconds; elongation, shown (in Table 1) 1 minute; the course was circulated for 40 times. After the termination of PCR, the production was analyzed by the Germany GmbH D-68298 analysis system automatically. Each amplification curve of reaction and CT value was observed. The average CT value was the extreme CT value of the sample. The expression difference of the gene was calculated by the 2-ΔΔCT method [11]. ΔCT = CT value of the goal gene - CT value of the control gene. The normal segments were taken as the control group, ΔΔCT = ΔCT of the goal gene group - ΔCT of the control gene group. The expression of normal segment was taken as 1, 2-ΔΔCT CT would be the multiple genes of the goal segment compared with the control segment.

Immunohistochemistry

The colon segment tissue sections were obtained from stenotic and normal segment of HSCR patients with typical rectosigmoid. Consecutive paraffin embedded tissue sections (4-7 µm) were dewaxed and dehydrated. The slides were incubated at 50°C overnight, then soaked in xylene for 10 minutes for three times, and immersed in 100% ethanol for 5 minutes, 95% ethanol for 5 minutes, and 80% and 70% ethanol for 1 minute each. After rehydration for 5 minutes, the slides were boiled in citrate buffer (pH 6.1, Target Retrieval Solution; Sigma, CA, USA) for 25 minutes, rinsed with 1 × PBS for 5 minutes, and treated with 3% hydrogen peroxide for 10 minutes. After that, slides were placed flat on the bench top and sections were covered in a solution of rabbit anti-body to BMPR1α, ACTN4α and FABP7 (1:100 dilution; Chemicon, Temecula, California, USA) at room temperature for 30 minutes and then covered with a solution of goat anti-rabbit (1:500) (Dako) for 30 minutes, and finally in a solution of streptavidin–horseradish peroxidase (LSAB2 System; Dako) for 30 minutes. Color was with the Substrate - Chromogen Solution (LSAB2 System; Dako) for 5 minutes, and counter-stained with Mayer hematoxylin (Merck, Darmstadt, Germany) for 1 minute. At last, the slides were dehydrated in 50%, 75% and 100% ethanol for 5 minute each, and sealed with mounting medium (CytosealTM 60 Thermo Scientific, Waltham, MA, USA).

Statistical analysis

All the data were analyzed with SPSS 14.0. The area of positive staining of the two segments was compared by one-way ANOVA; the relative coefficient of the gene expression was also compared by one-way ANOVA. The average CT value of each segment of the 180 samples was
Expression analysis of BMPR1α, ACTN4α and FABP7

Results

mRNA expressions of BMPR1α, ACTN4α and FABP7 in HSCR colon tissues

The expressions of BMPR1α, ACTN4α and FABP7 in mRNA levels evaluated by RT-PCR were summarized in Table 2. The representative results were shown in Figure 1. The expression of BMPR1α and ACTN4α were higher in the stenotic colon segment tissues than those in the normal colon segment tissues (Figure 1A and 1B). The expression of FABP7, however, was lower in the stenotic colon segment tissue than that in the normal colon segment tissue (Figure 1C).

To test if the was changed at the transcriptional level of BMPR1α, ACTN4α and FABP7 selected, we compared the mRNA level by performing qRT-PCR. The mRNA level of BMPR1α and ACTN4α were 4.6 fold and 3.7 fold higher in the stenotic colon segments than in the normal colon segments (n = 60, P < 0.005 and P < 0.001). The mRNA level of FABP7 was 3.3 fold higher in the normal colon segments than in the stenotic colon segments (n = 60, P < 0.001).
Expression analysis of BMPR1α, ACTN4α and FABP7

Proteins expressions of BMPR1α, ACTN4α and FABP7 in normal colon tissues

We performed immunohistochemistry staining to compare the protein expressions of BMPR1α, ACTN4α and FABP7 in stenotic colon segment and normal colon segment of HSCR patients. As shown in Figures 2-4, positive reaction was mainly located in the mucous layer and muscular layer in the stenotic colon segment of HSCR. The protein levels of BMPR1α and ACTN4α were higher in the stenotic colon segment than those in the normal colon segment (Figures 2A and 3A), while the protein level of FABP7 was lower in the stenotic colon segment than that in the normal colon segment (Figure 4B). The density analysis of the immunohistochemistry staining for BMPR1α, ACTN4α and FABP7 was summarized and shown in Table 3.

Table 3. The density of BMPR1α, ACTN4α and FABP7 in two segments (percentage of staining area to whole area %, means ± SD)

<table>
<thead>
<tr>
<th>Content</th>
<th>BMPR1α</th>
<th>ACTN4α</th>
<th>FABP7</th>
</tr>
</thead>
<tbody>
<tr>
<td>stenotic segment</td>
<td>16.35 ± 3.15</td>
<td>13.85 ± 3.67</td>
<td>6.14 ± 4.72</td>
</tr>
<tr>
<td>normal segment</td>
<td>7.84 ± 5.43</td>
<td>7.47 ± 2.89</td>
<td>15.03 ± 6.12</td>
</tr>
</tbody>
</table>

P < 0.05.

Discussion

Bone morphogenetic protein (BMP) signaling was recently shown to inhibit intestinal stem cell (ISC) renewal by suppressing the Wnt-β-catenin signaling pathway in a mouse model [12, 13]. In the study, the authors showed that inactivation of the BMP pathway via the loss of function of its receptor, Bmpr1α, could lead to an increase in ISC number and crypt fission and hence clonal expansion of aberrant crypts (hyperplasia) through increased nuclear localization of β-catenin in the ISCs. In view of this recent evidence, it is conceivable that the loss of function mutation in the human homologue, BMPR1α, could initiate colorectal tumorigenesis via the mixed juvenile/hyperplastic/adenomatous polyposis-carcinoma pathway by functioning in an analogous manner. Based on their reported roles in polyposis and tumor suppression, the BMPR1α was selected for further analysis [14-16]. Here, we reported the expression of BMPR1α mRNA was higher in the stenotic colon segment tissue than that in the normal colon segment tissue (Figure 1A). In the mucous layer and muscular layer, the quantity of BMPR1α immunoreactivity showed a regional increase in the stenotic colon segment than that in the normal colon segment (Figure 2).

ACTN4α gene is located on chromosome 19q13 and encodes the 100-kDa protein. ACTN4α functions to crosslink and bundle F-actin filaments and plays a role in signal transduction [17-19]. Its biological functions are include maintaining normal structure and function of the podocyte and it participates in regulating cell mobility during tumor metastasis [20, 21]. In the present study, we found that the expression of ACTN4α mRNA was higher in the
Expression analysis of BMPR1α, ACTN4α and FABP7

stenotic colon segment tissue than that in the normal colon segment tissue in the HSCR patients (Figure 1B). In the mucous layer and muscular layer the quantity of ACTN4α immunoreactivity showed a regional increase in the stenotic colon segment than that in the normal colon segment (Figure 3). mRNA and protein of ACTN4α were significantly different in the stenotic and the normal colon segment tissue.

FABP7 is a human gene mapping to chromosome 6q22-23. It is a member of the FABP family, consisting of structurally related proteins that have specific cell, tissue, and development patterns of expression. FABP7 was first isolated from a foetal brain cDNA library, and the transcript was detected in adult human brain and skeletal muscle but not in other normal adult tissue [22]. Generally, FABP proteins are involved in the uptake and intracellular trafficking of fatty acids, bile acids, and retinoids, as well as in cell signalling, gene transcription, cell growth, and differentiation. The report showed that in glioblastoma cells FABP7 expression was associated with increased migration [23]. In the present study, we found that the expression of FABP7 was significantly lower in the stenotic colon segment than that in the normal colon segment by the qRT-PCR. In the mucous layer and muscular layer the quantity of FABP7 immunoreactivity showed a regional increase in the normal colon segment than that in the stenotic colon segment (Figure 4). mRNA and protein of FABP7 were significantly different in the stenotic and the normal colon segment tissue.

In summary, we detected differential changes of mRNA and protein expressions of BMPR1α, ACTN4α and FABP7 in stenotic colon segment tissues of HSCR patients, which help us to understand the pathogenesis of sporadic HSCR patients.

Acknowledgements

This work was supported by grants from Shenyang Science and Technology Plan Project (No. F13-318-1-01). We thank Prof. Zhijie Li of the Central Laboratory, Shengjing Hospital Affiliated to China Medical University for her review of the manuscript. The authors are grateful to family members for their participation in this study.

Disclosure of conflict of interest

There is no interests of conflicts about this paper.

Address correspondence to: Hong Gao, Key Laboratory of Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, 36 Sanhao Street Heping District, Shenyang, Liaoning, 110004, The People’s Republic of China. Tel: +86 24 96615 13429; Fax: +86 24 23892617; E-mail: gaohong515@vip.sina.com

References


